A review of multiobjective test problems and a scalable test problem toolkit

被引:1534
作者
Huband, Simon [1 ]
Hingston, Phil
Barone, Luigi
While, Lyndon
机构
[1] Edith Cowan Univ, Mt Lawley, WA 6050, Australia
[2] Univ Western Australia, Crawley, WA 6009, Australia
基金
澳大利亚研究理事会;
关键词
evolutionary algorithms (EAs); multiobjective evolutionary algorithms; multiobjective optimization; multiobjective test problems;
D O I
10.1109/TEVC.2005.861417
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When attempting to better understand the strengths and weaknesses of an algorithm, it is important to have a strong understanding of the problem at hand. This is true for the field of multiobjective evolutionary algorithms (EAs) as it is for any other field. Many of the multiobjective test problems employed in the EA literature have not been rigorously analyzed, which makes it difficult to draw accurate conclusions about the strengths and weaknesses of the algorithms tested on them. In this paper, we systematically review and analyze many problems from the EA literature, each belonging to the important class of real-valued, unconstrained, multiobjective test problems. To support this, we first introduce a set of test problem criteria, which are in turn supported by a set of definitions. Our analysis of test problems highlights a number of areas requiring attention. Not only are many test problems poorly constructed but also the important class of nonseparable problems, particularly nonseparable multimodal problems, is poorly represented. Motivated by these findings, we present a flexible toolkit for constructing well-designed test problems. We also present empirical results demonstrating how the toolkit can be used to test an optimizer in ways that existing test suites do not.
引用
收藏
页码:477 / 506
页数:30
相关论文
共 63 条
[21]  
Fonseca C. M., 1996, Parallel Problem Solving from Nature - PPSN IV. International Conference on Evolutionary Computation - The 4th International Conference on Parallel Problem Solving from Nature. Proceedings, P584, DOI 10.1007/3-540-61723-X_1022
[22]  
Fonseca C. M., 1995, First International Conference on `Genetic Algorithms in Engineering Systems: Innovations and Applications' GALESIA (Conf. Publ. No.414), P45
[23]   An Overview of Evolutionary Algorithms in Multiobjective Optimization [J].
Fonseca, Carlos M. ;
Fleming, Peter J. .
EVOLUTIONARY COMPUTATION, 1995, 3 (01) :1-16
[24]  
GARCIA JMD, 2004, P C EVOL COMPUT, V2, P1479
[25]  
Good P, 2013, PERMUTATION TESTS PR
[26]  
Huband S, 2005, LECT NOTES COMPUT SC, V3410, P280
[27]  
Huband S, 2003, IEEE C EVOL COMPUTAT, P2284
[28]  
HUGHES EJ, 2004, P C EV COMP JUN, V2, P2357
[29]  
Ikeda K, 2001, IEEE C EVOL COMPUTAT, P957, DOI 10.1109/CEC.2001.934293
[30]   A multi-objective genetic local search algorithm and its application to flowshop scheduling [J].
Ishibuchi, H ;
Murata, T .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 1998, 28 (03) :392-403