Visually induced changes in components of the retinoic acid system in fundal layers of the chick

被引:69
作者
Bitzer, M [1 ]
Feldkaemper, M [1 ]
Schaeffel, F [1 ]
机构
[1] Univ Tubingen, Hosp Eye, Dept Expt Ophthalmol, D-72076 Tubingen, Germany
关键词
retinoic acid; aldehyde dehydrogenase-2; retinaldehyde dehydrogenase-2; eye growth; myopia; chicken;
D O I
10.1006/exer.1999.0762
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Eye growth is visually regulated via messengers that are released from the retina. The retina involves a yet unknown algorithm to analyse the projected image so that the appropriate growth rates for the back of the eye are ensured. One biochemical candidate that could act as a growth controller, is retinoic acid (RA). Previous work (Seko, Shimokawa and Tokoro, 1996; Mertz et al., 1999) has shown that retinal and choroidal RA levels are indeed predictably changed by visual conditions that cause myopia or hyperopia, respectively. We have studied in which fundal tissues aldehyde dehydrogenase-2 (AHD2) and retinaldehyde dehydrogenase-2 (RALDH2), enzymes involved in RA synthesis, are expressed and at which levels the effects of vision on RA levels may be controlled. Using Northern blot analysis, we have found that the retinal mRNA level of the AHD2 is up-regulated after 3 days of treatment with negative lenses (negative lenses place the image behind the retina). The abundance of the retinal mRNA of a RA receptor, RAR-beta, was up-regulated already after 6 hr of treatment with positive lenses (positive lenses place the image in front of the retina). The up-regulation persisted for at least 1 week. Finally, we have studied the effects of an inhibitor of RA synthesis, disulfiram, on the visual control of eye growth. We found inhibition of myopia as induced by frosted goggles ('deprivation myopia') but no significant inhibitory effects on refractive errors induced by +7D or -7D lenses. Our results are in line with the hypothesis that RA may play a role in the visual control of eye growth. The RA system differs from a number of other candidates (dopamine, cholinergic agents, opiates) in that it distinguishes between positive and negative defocus, similar tea the immediate early gene ZENK (Stell et al., 1999). The exact time kinetics of the changes have still to be worked out since it is possible that the changes in RA relate to already occurring changes in growth rather than to initial steps of the signaling cascade. (C) 2000 Academic Press.
引用
收藏
页码:97 / 106
页数:10
相关论文
共 38 条
[1]   A SIMPLE MECHANISM FOR EMMETROPIZATION WITHOUT CUES FROM ACCOMMODATION OR COLOR [J].
BARTMANN, M ;
SCHAEFFEL, F .
VISION RESEARCH, 1994, 34 (07) :873-876
[2]   CONSTANT LIGHT AFFECTS RETINAL DOPAMINE LEVELS AND BLOCKS DEPRIVATION MYOPIA BUT NOT LENS-INDUCED REFRACTIVE ERRORS IN CHICKENS [J].
BARTMANN, M ;
SCHAEFFEL, F ;
HAGEL, G ;
ZRENNER, E .
VISUAL NEUROSCIENCE, 1994, 11 (02) :199-208
[3]  
Boelen M, 1997, INVEST OPHTH VIS SCI, V38, P3511
[4]  
Boelen MK, 1999, INVEST OPHTH VIS SCI, V40, pS963
[5]   Retinoic acid and development of the retina [J].
Drager, UC ;
McCaffery, P .
PROGRESS IN RETINAL AND EYE RESEARCH, 1997, 16 (03) :323-351
[6]  
FELDKAEMPER M, 1999, INVEST OPHTHALMOL S, V40, P2396
[7]  
Fischer AJ, 1998, J COMP NEUROL, V393, P1
[8]   A rapid and convenient method to prepare DIG-labelled RNA probes for use in non-radioactive in situ hybridization [J].
Gandrillon, O ;
Solari, F ;
Legrand, C ;
Jurdic, P ;
Samarut, J .
MOLECULAR AND CELLULAR PROBES, 1996, 10 (01) :51-55
[9]  
Godbout R, 1996, DEV DYNAM, V205, P319, DOI 10.1002/(SICI)1097-0177(199603)205:3<319::AID-AJA11>3.0.CO
[10]  
2-#