Study of uptake and loss of silica nanoparticles in living human lung epithelial cells at single cell level

被引:63
作者
Stayton, Isaac
Winiarz, Jeffrey [1 ]
Shannon, Katie [2 ]
Ma, Yinfa [1 ]
机构
[1] Missouri Univ Sci & Technol, Dept Chem, Rolla, MO 65409 USA
[2] Missouri Univ Sci & Technol, Dept Biol Sci, Rolla, MO 65409 USA
关键词
Human lung epithelial cells; Silica nanoparticles; Cell uptake; Single cell imaging; PROTEIN ADSORPTION; TOXICITY; PARTICLES; DELIVERY; CDSE; MICE; LINE;
D O I
10.1007/s00216-009-2839-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The toxicology of nanomaterials is a blooming field of study, yet it is difficult to keep pace with the innovations in new materials and material applications. Those applications are quickly being introduced in research, industrial, and consumer settings. Even though the cytotoxicity of many types of nanoparticles has been demonstrated, the behavior of those particles in a biological environment is not yet fully known. This work characterized the following over time: protein adsorption on silica particle surfaces, the internalization of particles in human lung carcinoma (A549) cells when coated with different specific proteins or no proteins at all, and the cellular loss of particles following the removal of extracellular particles. Proteins were shown to quickly saturate the particle surface, followed by a competitive process of particle agglomeration and protein adsorption. Uptake of particles peaked at 8-10 h, and it was determined that, in this system, the charge of the protein-coated particles changed the rate of uptake if the charge difference was great enough. Cells internalized particles lacking any adsorbed proteins with approximately 3 times the rate of protein-coated particles with the same charge. Although particles exited cells over time, the process was slower than uptake and did not near completion within 24 h. Finally, analysis at the single cell level afforded observations of particle agglomerates loosely associated with cell membranes when serum was present in the culture medium, but in the absence of serum, particles adhered to the dish floor and formed smaller agglomerates on cell surfaces. Although data trends were easily distinguished, all samples showed considerable variation from cell to cell.
引用
收藏
页码:1595 / 1608
页数:14
相关论文
共 47 条
[1]  
ADAMS M, 2007, J UNDERGRAD CHEM RES, V6
[2]   Mesoporous silicate materials as substrates for molecular machines and drug delivery [J].
Angelos, Sarah ;
Liong, Monty ;
Choi, Eunshil ;
Zink, Jeffrey I. .
CHEMICAL ENGINEERING JOURNAL, 2008, 137 (01) :4-13
[3]   Reproducible Comet assay of amorphous silica nanoparticles detects no genotoxicity [J].
Barnes, Clifford A. ;
Elsaesser, Andreas ;
Arkusz, Joanna ;
Smok, Anna ;
Palus, Jadwiga ;
Lesniak, Anna ;
Salvati, Anna ;
Hanrahan, John P. ;
de Jong, Wirn H. ;
Dziubaltowska, Elzbieta ;
Stepnik, Maciej ;
Rydzynski, Konrad ;
McKerr, George ;
Lynch, Iseult ;
Dawson, Kenneth A. ;
Howard, C. Vyvyan .
NANO LETTERS, 2008, 8 (09) :3069-3074
[4]  
BOSCH A, 2006, SYNTHETIC AMORPHOUS, P1
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   RAT MEMORY LYMPHOCYTES-T .2. DIFFERENCES IN MACROPHAGE-DEPENDENT ACTIVATION SHOWN BY ACTINOMYCES-VISCOSUS ANTIGENS AND BY MITOGENS, USING SILICA INVITRO [J].
BURCKHARDT, JJ .
SCANDINAVIAN JOURNAL OF IMMUNOLOGY, 1979, 10 (03) :229-235
[7]   In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line [J].
Chang, Jenq-Sheng ;
Chang, Ke Liang B. ;
Hwang, Deng-Fwu ;
Kong, Zwe-Ling .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (06) :2064-2068
[8]   Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles [J].
Chen, M ;
von Mikecz, A .
EXPERIMENTAL CELL RESEARCH, 2005, 305 (01) :51-62
[9]   The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles 3T3-L1 cells and human mesenchymal stem cells [J].
Chung, Tsai-Hua ;
Wu, Si-Han ;
Yao, Ming ;
Lu, Chen-Wen ;
Lin, Yu-Shen ;
Hung, Yann ;
Mou, Chung-Yuan ;
Chen, Yao-Chang ;
Huang, Dong-Ming .
BIOMATERIALS, 2007, 28 (19) :2959-2966
[10]   Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure [J].
Correa-Duarte, MA ;
Giersig, M ;
Liz-Marzan, LM .
CHEMICAL PHYSICS LETTERS, 1998, 286 (5-6) :497-501