Bayesian wavelet networks for nonparametric regression

被引:25
作者
Holmes, CC
Mallick, BK
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2000年 / 11卷 / 01期
基金
英国经济与社会研究理事会; 英国工程与自然科学研究理事会;
关键词
Bayesian neural networks; Markov chain Monte Carlo; model choice; nonparametric regression; radial basis functions; reversible jump; splines; wavelets;
D O I
10.1109/72.822507
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Radial wavelet networks have recently been proposed as a method for nonparametric regression. In this paper we analyze their performance within a Bayesian framework. We derive probability distributions over both the dimension of the networks and the network coefficients by placing a prior on the degrees of freedom of the model. This process bypasses the need to test or select a finite number of networks during the modeling process, Predictions are formed by mixing over many models of varying dimension and parameterization. We show that the complexity of the models adapts to the complexity of the data and produces good results on a number of benchmark test series.
引用
收藏
页码:27 / 35
页数:9
相关论文
共 27 条
[11]  
Hastie T., 1990, Generalized additive model
[12]   MONTE-CARLO SAMPLING METHODS USING MARKOV CHAINS AND THEIR APPLICATIONS [J].
HASTINGS, WK .
BIOMETRIKA, 1970, 57 (01) :97-&
[13]   Bayesian radial basis functions of variable dimension [J].
Holmes, CC ;
Mallick, BK .
NEURAL COMPUTATION, 1998, 10 (05) :1217-1233
[14]  
HWANG JN, 1994, IEEE T NEURAL NETWOR, V5, P342, DOI 10.1109/72.286906
[15]   BAYES FACTORS [J].
KASS, RE ;
RAFTERY, AE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :773-795
[16]   MULTIDIMENSIONAL WAVELET FRAMES [J].
KUGARAJAH, T ;
ZHANG, Q .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1995, 6 (06) :1552-1556
[17]   CHAOTIC TIME-SERIES .2. SYSTEM-IDENTIFICATION AND PREDICTION [J].
LILLEKJENDLIE, B ;
KUGIUMTZIS, D ;
CHRISTOPHERSEN, N .
MODELING IDENTIFICATION AND CONTROL, 1994, 15 (04) :225-243
[18]  
*LOS AL NAT LAB, 1987, LAUR872662 LOS AL NA
[19]   A PRACTICAL BAYESIAN FRAMEWORK FOR BACKPROPAGATION NETWORKS [J].
MACKAY, DJC .
NEURAL COMPUTATION, 1992, 4 (03) :448-472
[20]   A PRACTICAL BAYESIAN FRAMEWORK FOR BACKPROPAGATION NETWORKS [J].
MACKAY, DJC .
NEURAL COMPUTATION, 1992, 4 (03) :448-472