Cellular features of an apoptotic form of programmed cell death during the development of the ascidian, Boltenia villosa

被引:12
作者
Bates, WR [1 ]
机构
[1] Okanagan Univ Coll, Dept Biol, Kelowna, BC V1V 1V7, Canada
关键词
ascidian; development; apoptosis; metamorphosis; evolution;
D O I
10.2108/zsj.21.553
中图分类号
Q95 [动物学];
学科分类号
071002 ;
摘要
The phylogenetic position of ascidians near the base of the chordate tree makes them ideal organisms for evolutionary developmental studies of programmed cell death (PCD). In the present study, the following key features of an apoptotic form of PCD are described in Boltenia villosa: fragmentation of DNA, increases in plasma membrane permeability, decreases in mitochondrial activity, production of reactive oxygen species (ROS), and caspase activation. First, evidence is presented for apoptosis of cells within the ovary. Later in development, during the early phase of larval tail resorption at the beginning of metamorphosis, some notochord nuclei showed DNA fragmentation and their cell corpses were rapidly eliminated from the larval body. In striking contrast to the rapid demise of notochord cells, larval muscle cells persisted for more than a week within developing juveniles. Rhodamine 123 and MTT experiments suggest that mitochondria within some of the resorbed larval tail muscle cells were metabolically active for more than a week. Furthermore, resorbed tail muscle cells contained a muscle-specific intermediate filament, termed p58, despite relatively high levels of ROS activity and the ubiquitination of their plasma membranes at day two. Corpses of larval tail muscle cells containing aggregated pigment granules survived within juveniles for more than a month, in contrast to the rapid elimination of notochord cells. Evidence consistent with the formation of larval muscle cell apoptotic bodies is presented. The most surprising result of the present study was that caspase-8, usually associated with apoptotic signaling, was activated in larval endoderm cells that develop into adult structures. When the present results were compared to features of PCD previously reported in other ascidians, significant species differences in PCD were revealed.
引用
收藏
页码:553 / 563
页数:11
相关论文
共 26 条
[1]   Competition and compensation: Coupled to death in development and cancer [J].
Abrams, JM .
CELL, 2002, 110 (04) :403-406
[2]   Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium [J].
Baines, CP ;
Goto, M ;
Downey, JM .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1997, 29 (01) :207-216
[3]  
Bates WR, 1996, DEV GROWTH DIFFER, V38, P307, DOI 10.1046/j.1440-169X.1996.t01-2-00010.x
[4]   ALKALINE-PHOSPHATASE EXPRESSION IN ASCIDIAN EGG FRAGMENTS AND ANDROMEROGONS [J].
BATES, WR ;
JEFFERY, WR .
DEVELOPMENTAL BIOLOGY, 1987, 119 (02) :382-389
[5]   Apoptosis - Mitochondria - the death signal integrators [J].
Brenner, C ;
Kroemer, G .
SCIENCE, 2000, 289 (5482) :1150-1151
[6]  
Chambon JP, 2002, DEVELOPMENT, V129, P3105
[7]   Activation of the NF-κB pathway by Caspase 8 and its homologs [J].
Chaudhary, PM ;
Eby, MT ;
Jasmin, A ;
Kumar, A ;
Liu, L ;
Hood, L .
ONCOGENE, 2000, 19 (39) :4451-4460
[8]  
CLONEY RA, 1982, AM ZOOL, V22, P817
[9]   The draft genome of Ciona intestinalis:: Insights into chordate and vertebrate origins [J].
Dehal, P ;
Satou, Y ;
Campbell, RK ;
Chapman, J ;
Degnan, B ;
De Tomaso, A ;
Davidson, B ;
Di Gregorio, A ;
Gelpke, M ;
Goodstein, DM ;
Harafuji, N ;
Hastings, KEM ;
Ho, I ;
Hotta, K ;
Huang, W ;
Kawashima, T ;
Lemaire, P ;
Martinez, D ;
Meinertzhagen, IA ;
Necula, S ;
Nonaka, M ;
Putnam, N ;
Rash, S ;
Saiga, H ;
Satake, M ;
Terry, A ;
Yamada, L ;
Wang, HG ;
Awazu, S ;
Azumi, K ;
Boore, J ;
Branno, M ;
Chin-bow, S ;
DeSantis, R ;
Doyle, S ;
Francino, P ;
Keys, DN ;
Haga, S ;
Hayashi, H ;
Hino, K ;
Imai, KS ;
Inaba, K ;
Kano, S ;
Kobayashi, K ;
Kobayashi, M ;
Lee, BI ;
Makabe, KW ;
Manohar, C ;
Matassi, G ;
Medina, M .
SCIENCE, 2002, 298 (5601) :2157-2167
[10]   Geldanamycin leads to superoxide formation by enzymatic and non-enzymatic redox cycling - Implications for studies of hsp90 and endothelial cell nitric-oxide synthase [J].
Dikalov, S ;
Landmesser, U ;
Harrison, DG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (28) :25480-25485