Surface simplification using a discrete curvature norm

被引:87
作者
Kim, SJ
Kim, CH [1 ]
Levin, D
机构
[1] Korea Univ, Dept Comp Sci, Seoul 136701, South Korea
[2] Tel Aviv Univ, Dept Math Appl, IL-69978 Tel Aviv, Israel
[3] Tel Aviv Univ, Dept Math Appl, IL-69978 Tel Aviv, Israel
来源
COMPUTERS & GRAPHICS-UK | 2002年 / 26卷 / 05期
关键词
surface simplification; multiresolution modeling; edge collapse; level of detail; discrete curvatures;
D O I
10.1016/S0097-8493(02)00121-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper proposes a mesh simplification algorithm using a discrete curvature norm. Most of the simplification algorithms are using a distance metric to date. The distance metric is very efficient to measure geometric error, but it is difficult to distinguish important shape features such as a high-curvature region even though it has a small distance metric. We suggest a discrete curvature norm to measure geometric error for such features. During simplification the new vertex resulted from an edge collapse takes a position using a butterfly subdivision mask to minimize geometric error. This paper shows that simplification results have smaller geometric errors than previous works, when a discrete curvature norm and a distance metric are together applied to its criterion. (C) 2002 Published by Elsevier Science Ltd.
引用
收藏
页码:657 / 663
页数:7
相关论文
共 15 条
[1]   Metro:: Measuring error on simplified surfaces [J].
Cignoni, P ;
Rocchini, C ;
Scopigno, R .
COMPUTER GRAPHICS FORUM, 1998, 17 (02) :167-174
[2]  
Cohen J., 1996, Computer Graphics Proceedings. SIGGRAPH '96, P119, DOI 10.1145/237170.237220
[3]  
DESBRUN M, UNPUB DISCRETE DIFFE
[4]  
Dyn N, 2001, INNOV APPL MATH, P135
[5]   Simplifying surfaces with color and texture using quadric error metrics [J].
Garland, M ;
Heckbert, PS .
VISUALIZATION '98, PROCEEDINGS, 1998, :263-+
[6]  
GARLAND M, 1997, P 24 ANN C COMP GRAP, P209, DOI DOI 10.1145/258734.258849
[7]   A DATA REDUCTION SCHEME FOR TRIANGULATED SURFACES [J].
HAMANN, B .
COMPUTER AIDED GEOMETRIC DESIGN, 1994, 11 (02) :197-214
[8]   Optimal triangulation and quadric-based surface simplification [J].
Heckbert, PS ;
Garland, M .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1999, 14 (1-3) :49-65
[9]  
Hoppe H., 1999, Proceedings Visualization '99 (Cat. No.99CB37067), P59, DOI 10.1109/VISUAL.1999.809869
[10]   Mesh reduction with error control [J].
Klein, R ;
Liebich, G ;
Stasser, W .
VISUALIZATION '96, PROCEEDINGS, 1996, :311-318