Controlled nanoparticle assembly by dewetting of charged polymer solutions

被引:43
作者
Lee, LT
Leite, CAP
Galembeck, F
机构
[1] Univ Estadual Campinas, Inst Quim, BR-13084971 Campinas, SP, Brazil
[2] CEA Saclay, CNRS, Leon Brillouin Lab, F-91191 Gif Sur Yvette, France
关键词
D O I
10.1021/la049806t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we present an alternative approach for controlled nanoparticle organization on a solid substrate by applying dewetting patterns of charged polymer solutions as a templating system. Thin films of charged polymer solutions dewet a solid substrate to form complex dewetting patterns that depend on the polymer charge density. These patterns, ranging from polygonal networks to elongated structures that are stabilized by viscous forces during dewetting, serve as potential templates for two-dimensional nanoparticle organization on a solid substrate. Thus, while nanoparticles dried in pure water undergo self-assembly to form close-packed arrays, addition of charged polymer in the dispersion leads to the formation of open structures that are directed by the dewetting patterns of the polymer solution. In this study, we focus on the application of elongated structures resulting from dewetting of high-charge-density polymer solutions to align nanoparticles of silica and gold into long chains that are several micrometers in length. The particle ordering process is a two-step mechanism: an initial confinement of the nanoparticles in the dewetting structures and self-assembly of the particles within these structures upon further drying by lateral capillary attractions.
引用
收藏
页码:4430 / 4435
页数:6
相关论文
共 36 条
[1]   Patterned colloidal deposition controlled by electrostatic and capillary forces [J].
Aizenberg, J ;
Braun, PV ;
Wiltzius, P .
PHYSICAL REVIEW LETTERS, 2000, 84 (13) :2997-3000
[2]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[3]   Organization of 'nanocrystal molecules' using DNA [J].
Alivisatos, AP ;
Johnsson, KP ;
Peng, XG ;
Wilson, TE ;
Loweth, CJ ;
Bruchez, MP ;
Schultz, PG .
NATURE, 1996, 382 (6592) :609-611
[4]   DNA-templated assembly and electrode attachment of a conducting silver wire [J].
Braun, E ;
Eichen, Y ;
Sivan, U ;
Ben-Yoseph, G .
NATURE, 1998, 391 (6669) :775-778
[5]   Bridging of lateral nanoelectrodes with a metal particle chain [J].
Burghard, M ;
Philipp, G ;
Roth, S ;
von Klitzing, K .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 67 (05) :591-593
[6]  
COSTA CAR, COMMUNICATION
[7]   MECHANISM OF FORMATION OF 2-DIMENSIONAL CRYSTALS FROM LATEX-PARTICLES ON SUBSTRATES [J].
DENKOV, ND ;
VELEV, OD ;
KRALCHEVSKY, PA ;
IVANOV, IB ;
YOSHIMURA, H ;
NAGAYAMA, K .
LANGMUIR, 1992, 8 (12) :3183-3190
[8]   Organization of metallic nanoparticles using tobacco mosaic virus templates [J].
Dujardin, E ;
Peet, C ;
Stubbs, G ;
Culver, JN ;
Mann, S .
NANO LETTERS, 2003, 3 (03) :413-417
[9]   Hydrophobic anchoring of monolayer-protected gold nanoclusters to carbon nanotubes [J].
Ellis, AV ;
Vjayamohanan, K ;
Goswaimi, R ;
Chakrapani, N ;
Ramanathan, LS ;
Ajayan, PM ;
Ramanath, G .
NANO LETTERS, 2003, 3 (03) :279-282
[10]  
Ford WE, 2001, ADV MATER, V13, P1793, DOI 10.1002/1521-4095(200112)13:23<1793::AID-ADMA1793>3.0.CO