Product rotational angular momentum polarization in the reaction O(1D2)+H2→OH+H

被引:39
作者
Alexander, AJ
Aoiz, FJ
Bañares, L
Brouard, M
Simons, JP
机构
[1] Phys & Theoret Chem Lab, Oxford OX1 3QZ, England
[2] Univ Complutense Madrid, Fac Quim, Dept Quim Fis, E-28040 Madrid, Spain
关键词
D O I
10.1039/a908928d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The stereodynamics of the title reaction on two ab initio versions of the ground (A') state potential energy surface, and one version of the excited (A ") state potential surface, have been studied in detail using quasi-classical trajectory methods. The calculations were carried out at a collision energy of 0.1 eV (equivalent to 9.6 kJ mol(-1)). The polarizations of the reagent and product orbital angular momenta (l and l'), and of the product rotational angular momenta (j') in the (k,k') scattering frame were found to be very sensitive to the OH(upsilon',j') rovibrational product state, and to the choice of potential energy surface employed. Differences in the angular momentum polarization with potential energy surface are traced to differences in microscopic reaction mechanism. State resolved orientation and alignment of the OH product rotational angular momentum are shown to be potential keys to understanding the dynamics on the attractive ground state surface, and to elucidating the degree of involvement of excited electronic state surfaces.
引用
收藏
页码:571 / 580
页数:10
相关论文
共 52 条
[51]   QUASICLASSICAL TRAJECTORY INVESTIGATION OF THE REACTION O (1D) + H-2 [J].
WHITLOCK, PA ;
MUCKERMAN, JT ;
FISHER, ER .
JOURNAL OF CHEMICAL PHYSICS, 1982, 76 (09) :4468-4489
[52]  
WHITLOCK PA, 1981, POTENTIAL ENERGY SUR, P551