Molecular Simulation of the Potential of Methane Reoccupation during the Replacement of Methane Hydrate by CO2

被引:151
作者
Geng, Chun-Yu [1 ,2 ]
Wen, Hao [1 ]
Zhou, Han [3 ]
机构
[1] Chinese Acad Sci, State Key Lab Multi Phase Complex Syst, Inst Proc Engn, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
[3] SINOPEC, Res Inst Petr Proc, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON-DIOXIDE; CLATHRATE-HYDRATE; DYNAMICS SIMULATION; PHASE-EQUILIBRIA; ENERGY RESOURCE; DEEP OCEAN; EXPLOITATION; STABILITY; DENSITY; STORAGE;
D O I
10.1021/jp811474m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics simulations and stabilization energy calculations are performed in this work in order to understand the stability of CH4 hydrate, CO2 hydrate, and CH4-CO2 mixed hydrate. The model systems of fully occupied type SI CH4 hydrate, CO2 hydrate, and CH4-CO2 mixed hydrate are prepared in a simulation box of 2 x 2 x 2 unit cell with periodic boundary conditions. The MD simulation results reveal that the CH4-CO2 mixed hydrate is the most stable one in above three hydrates. The stabilization energy calculations of small and large cavities occupied by CH4 and CO2 show that the CO2 molecule is less Suitable for the small cavity because of its larger size compared with the CH4 molecule but is more Suitable for the large cavity. The results in this work can also explain the possibility of CH4 molecule in reoccupying the small cavity during the replacement of CH4 hydrate by CO2, from the hydrate stability point of view.
引用
收藏
页码:5463 / 5469
页数:7
相关论文
共 35 条
[1]  
*ACC SOFTW INC, 2006, MAT STUD VERS 4 0
[2]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[3]   Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica [J].
Anderson, R ;
Llamedo, M ;
Tohidi, B ;
Burgass, RW .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (15) :3507-3514
[4]  
[Anonymous], 2016, GAUSSIAN 16 REV B01
[5]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .2. THE EFFECT OF THE PERDEW-WANG GENERALIZED-GRADIENT CORRELATION CORRECTION [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (12) :9173-9177
[6]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[7]   Molecular dynamics study of the structure and thermophysical properties of model sI clathrate hydrates [J].
Chialvo, AA ;
Houssa, M ;
Cummings, PT .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (02) :442-451
[8]  
Collett TS, 2002, AAPG BULL, V86, P1971
[9]   Computations of diffusivities in ice and CO2 clathrate hydrates via molecular dynamics and Monte Carlo simulations [J].
Demurov, A ;
Radhakrishnan, R ;
Trout, BL .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (02) :702-709
[10]   Molecular dynamics simulation on the dissociation process of methane hydrates [J].
Ding, L. Y. ;
Geng, C. Y. ;
Zhao, Y. H. ;
Wen, H. .
MOLECULAR SIMULATION, 2007, 33 (12) :1005-1016