Site-specific incorporation of (aminooxy)acetic acid into proteins

被引:28
作者
Eisenhauer, BM
Hecht, SM
机构
[1] Univ Virginia, Dept Chem, Charlottesville, VA 22901 USA
[2] Univ Virginia, Dept Biol, Charlottesville, VA 22901 USA
关键词
D O I
10.1021/bi020352d
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
By employing a general biosynthetic method for the elaboration of proteins containing unnatural amino acid analogues, we incorporated (aminooxy)acetic acid into positions 10 and 27 of Escherichia coli dihydrofolate reductase. Introduction of the modified amino acid into DHFR was accomplished in an in vitro protein biosynthesizing system by readthrough of a nonsense (UAG) codon with a suppressor tRNA that had been activated with (aminooxy)acetic acid. Incorporation of the amino acid proceeded with reasonable efficiency at codon position 10 but less well at position 27. (Aminooxy)acetic acid was also incorporated into position 72 of DNA polymerase beta. Peptides containing (aminooxy)acetic acid have been shown to adopt a preferred conformation involving an eight-membered ring that resembles a gamma-turn. Accordingly, the present study may faciliate the elaboration of proteins containing conformationally biased peptidomimetic motifs at predetermined sites. The present results further extend the examples of ribosomally mediated formation of peptide bond analogues of altered connectivity and provide a conformationally biased linkage at a predetermined site. It has also been shown that the elaborated protein can be cleaved chemically at the site containing the modified amino acid.
引用
收藏
页码:11472 / 11478
页数:7
相关论文
共 75 条
[1]   Structurally modified firefly luciferase, effects of amino acid substitution at position 286 [J].
Arslan, T ;
Mamaev, SV ;
Mamaeva, NV ;
Hecht, SM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (45) :10877-10887
[2]   SITE-SPECIFIC INCORPORATION OF NONNATURAL RESIDUES DURING INVITRO PROTEIN-BIOSYNTHESIS WITH SEMISYNTHETIC AMINOACYL-TRANSFER RNAS [J].
BAIN, JD ;
DIALA, ES ;
GLABE, CG ;
WACKER, DA ;
LYTTLE, MH ;
DIX, TA ;
CHAMBERLIN, AR .
BIOCHEMISTRY, 1991, 30 (22) :5411-5421
[3]   SITE-SPECIFIC INCORPORATION OF NONNATURAL RESIDUES INTO PEPTIDES - EFFECT OF RESIDUE STRUCTURE ON SUPPRESSION AND TRANSLATION EFFICIENCIES [J].
BAIN, JD ;
WACKER, DA ;
KUO, EE ;
CHAMBERLIN, AR .
TETRAHEDRON, 1991, 47 (14-15) :2389-2400
[4]   RIBOSOME-MEDIATED INCORPORATION OF A NONSTANDARD AMINO-ACID INTO A PEPTIDE THROUGH EXPANSION OF THE GENETIC-CODE [J].
BAIN, JD ;
SWITZER, C ;
CHAMBERLIN, AR ;
BENNER, SA .
NATURE, 1992, 356 (6369) :537-539
[5]   Generation of active trypsin by chemical cleavage [J].
Baird, T ;
Wang, BX ;
Lodder, M ;
Hecht, SM ;
Craik, CS .
TETRAHEDRON, 2000, 56 (48) :9477-9485
[6]   A highly efficient method for site-specific modification of unprotected peptides after chemical synthesis [J].
Bark, SJ ;
Schmid, S ;
Hahn, KM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (15) :3567-3573
[7]   INSIGHTS INTO ENZYME FUNCTION FROM STUDIES ON MUTANTS OF DIHYDROFOLATE-REDUCTASE [J].
BENKOVIC, SJ ;
FIERKE, CA ;
NAYLOR, AM .
SCIENCE, 1988, 239 (4844) :1105-1110
[8]  
BOLIN JT, 1982, J BIOL CHEM, V257, P13650
[9]   LONG-RANGE STRUCTURAL EFFECTS IN A 2ND-SITE REVERTANT OF A MUTANT DIHYDROFOLATE-REDUCTASE [J].
BROWN, KA ;
HOWELL, EE ;
KRAUT, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (24) :11753-11756
[10]   CODON CONTEXT AND PROTEIN-SYNTHESIS - ENHANCEMENTS OF THE GENETIC-CODE [J].
BUCKINGHAM, RH .
BIOCHIMIE, 1994, 76 (05) :351-354