Single-crystal mesostructured semiconductors with cubic Ia(3)over-bard symmetry and ion-exchange properties

被引:95
作者
Trikalitis, PN
Rangan, KK
Bakas, T
Kanatzidis, MG [1 ]
机构
[1] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA
[2] Univ Ioannina, Dept Phys, GR-45110 Ioannina, Greece
关键词
D O I
10.1021/ja026367g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
If the full scientific and technological potential of mesostructured materials is to be achieved, systems with continuous domains in the form of single crystals or films must be prepared. Here we report a reliable and facile system for making large single-crystal particles of chalcogenido mesostructured materials with a highly organized cubic structure, accessible pore structure, and semiconducting properties. Building blocks with square planar bonding topology, Pt2+ and [Sn2Se6](4-), in combination with long-chain pyridinium surfactants (CnPyBr, n = 18, 20) favor faceted single-crystal particles with the highest possible space group symmetry la (3) over bard This is an important step toward developing large single-domain crystalline mesostructured semiconductors and usable natural self-assembled antidot array systems. The tendency toward cubic symmetry is so strong that the materials assemble readily under experimental conditions that can tolerate considerable variation and form micrometer-sized rhombic dodecahedral cubosome particles. The c-CnPyPtSnSe materials are the first to exhibit reversible ion-exchange properties. The surfactant molecules can be ion-exchanged reversibly and without loss of the cubic structure and particle morphology. The cubosomes possess a three-dimensional open Pt-Sn-Se framework with a low-energy band gap of similar to1.7 eV.
引用
收藏
页码:12255 / 12260
页数:6
相关论文
共 74 条
[21]   Functionalized monolayers on ordered mesoporous supports [J].
Feng, X ;
Fryxell, GE ;
Wang, LQ ;
Kim, AY ;
Liu, J ;
Kemner, KM .
SCIENCE, 1997, 276 (5314) :923-926
[22]   Mesoporous silicate sequestration and release of proteins [J].
Han, YJ ;
Stucky, GD ;
Butler, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (42) :9897-9898
[23]   Ag nanowire formation within mesoporous silica [J].
Huang, MH ;
Choudrey, A ;
Yang, PD .
CHEMICAL COMMUNICATIONS, 2000, (12) :1063-1064
[24]   Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles [J].
Joo, SH ;
Choi, SJ ;
Oh, I ;
Kwak, J ;
Liu, Z ;
Terasaki, O ;
Ryoo, R .
NATURE, 2001, 412 (6843) :169-172
[25]   Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography [J].
Kaneda, M ;
Tsubakiyama, T ;
Carlsson, A ;
Sakamoto, Y ;
Ohsuna, T ;
Terasaki, O ;
Joo, SH ;
Ryoo, R .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (06) :1256-1266
[26]   Synthesis of porous palladium superlattice nanoballs and nanowires [J].
Kang, H ;
Jun, Y ;
Park, JI ;
Lee, KB ;
Cheon, J .
CHEMISTRY OF MATERIALS, 2000, 12 (12) :3530-+
[27]   Synthesis of MCM-48 single crystals [J].
Kim, JM ;
Kim, SK ;
Ryoo, R .
CHEMICAL COMMUNICATIONS, 1998, (02) :259-260
[28]  
Kisler JM, 2001, MICROPOR MESOPOR MAT, V44, P769
[29]   Nanoparticles of 3d transition metal oxides in mesoporous MCM-48 silica host structures:: Synthesis and characterization [J].
Köhn, R ;
Fröba, M .
CATALYSIS TODAY, 2001, 68 (1-3) :227-236
[30]   ORDERED MESOPOROUS MOLECULAR-SIEVES SYNTHESIZED BY A LIQUID-CRYSTAL TEMPLATE MECHANISM [J].
KRESGE, CT ;
LEONOWICZ, ME ;
ROTH, WJ ;
VARTULI, JC ;
BECK, JS .
NATURE, 1992, 359 (6397) :710-712