Linear chromosome maintenance in the absence of essential telomere-capping proteins

被引:36
作者
Zubko, Mikhajlo K.
Lydall, David [1 ]
机构
[1] Univ Newcastle Upon Tyne, Inst Ageing & Hlth, Newcastle Upon Tyne NE4 6BE, Tyne & Wear, England
[2] Univ Newcastle Upon Tyne, Inst Cell & Mol Biosci, Newcastle Upon Tyne NE4 6BE, Tyne & Wear, England
[3] Univ Newcastle Upon Tyne, Ctr Integrated Syst Biol Ageing & Nutr, Henry Wellcome Lab Biogerontol Res, Newcastle Upon Tyne NE4 6BE, Tyne & Wear, England
基金
英国惠康基金;
关键词
D O I
10.1038/ncb1428
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Telomeres were defined by their ability to cap chromosome ends(1,2). Proteins with high affinity for the structure at chromosome ends, binding the G-rich, 3' single-stranded overhang at telomeres include Pot1 in humans and fission yeast, TEBP in Oxytricha nova and Cdc13 in budding yeast(3-5). Cdc13 is considered essential for telomere capping because budding yeast that lack Cdc13 rapidly accumulate excessive single-stranded DNA ( ssDNA) at telomeres, arrest cell division and die(6-8). Cdc13 has a separate, critical role in telomerase recruitment to telomeres(9,10). Here, we show that neither Cdc13 nor its partner Stn1 are necessary for telomere capping if nuclease activities that are active at uncapped telomeres are attenuated. Recombination-dependent and -independent mechanisms permit maintenance of chromosomes without Cdc13. Our results indicate that the structure of the eukaryotic telomere cap is remarkably flexible and that changes in the DNA damage response allow alternative strategies for telomere capping to evolve.
引用
收藏
页码:734 / 740
页数:7
相关论文
共 31 条
[1]   Genomic analysis of Drosophila melanogaster telomeres:: Full-length copies of HeT-A and TART elements at telomeres [J].
Abad, JP ;
de Pablos, B ;
Osoegawa, K ;
de Jong, PJ ;
Martín-Gallardo, A ;
Villasante, A .
MOLECULAR BIOLOGY AND EVOLUTION, 2004, 21 (09) :1613-1619
[2]   Pot1, the putative telomere end-binding protein in fission yeast and humans [J].
Baumann, P ;
Cech, TR .
SCIENCE, 2001, 292 (5519) :1171-1175
[3]   EXO1 contributes to telomere maintenance in both telomerase-proficient and telomerase-deficient Saccharomyces cerevisiae [J].
Bertuch, AA ;
Lundblad, V .
GENETICS, 2004, 166 (04) :1651-1659
[4]   Functional links between telomeres and proteins of the DNA-damage response [J].
di Fagagna, FD ;
Teo, SH ;
Jackson, SP .
GENES & DEVELOPMENT, 2004, 18 (15) :1781-1799
[5]   A genome-wide screen identifies the evolutionarily conserved KEOPS complex as a telomere regulator [J].
Downey, M ;
Houlsworth, R ;
Maringele, L ;
Rollie, A ;
Brehme, M ;
Galicia, S ;
Guillard, S ;
Partington, M ;
Zubko, MK ;
Krogan, NJ ;
Emili, A ;
Greenblatt, JF ;
Harrington, L ;
Lydall, D ;
Durocher, D .
CELL, 2006, 124 (06) :1155-1168
[6]   Est1 and Cdc13 as comediators of telomerase access [J].
Evans, SK ;
Lundblad, V .
SCIENCE, 1999, 286 (5437) :117-120
[7]   Indecent exposure: When telomeres become uncapped [J].
Ferreira, MG ;
Miller, KM ;
Cooper, JP .
MOLECULAR CELL, 2004, 13 (01) :7-18
[8]   Degradation-mediated protein quality control in the nucleus [J].
Gardner, RG ;
Nelson, ZW ;
Gottschling, DE .
CELL, 2005, 120 (06) :803-815
[9]  
GARVIK B, 1995, MOL CELL BIOL, V15, P6128
[10]   Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination [J].
Grandin, N ;
Damon, C ;
Charbonneau, M .
EMBO JOURNAL, 2001, 20 (21) :6127-6139