Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network

被引:305
作者
Klemm, Robin W. [1 ]
Ejsing, Christer S. [1 ]
Surma, Michal A. [1 ]
Kaiser, Hermann-Josef [1 ]
Gerl, Mathias J. [1 ]
Sampaio, Julio L. [1 ]
de Robillard, Quentin [1 ]
Ferguson, Charles [1 ]
Proszynski, Tomasz J. [2 ]
Shevchenko, Andrej [1 ]
Simons, Kai [1 ]
机构
[1] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
[2] Harvard Univ, Ctr Brain Sci, Cambridge, MA 02138 USA
关键词
PLASMA-MEMBRANE ATPASE; CELL-SURFACE DELIVERY; SACCHAROMYCES-CEREVISIAE; MASS-SPECTROMETRY; LIPID RAFTS; EPITHELIAL-CELLS; APICAL MEMBRANE; YEAST; PATHWAY; ERGOSTEROL;
D O I
10.1083/jcb.200901145
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The trans-Golgi network (TGN) is the major sorting station in the secretory pathway of all eukaryotic cells. How the TGN sorts proteins and lipids to generate the enrichment of sphingolipids and sterols at the plasma membrane is poorly understood. To address this fundamental question in membrane trafficking, we devised an immunoisolation procedure for specific recovery of post-Golgi secretory vesicles transporting a transmembrane raft protein from the TGN to the cell surface in the yeast Saccharomyces cerevisiae. Using a novel quantitative shotgun lipidomics approach, we could demonstrate that TGN sorting selectively enriched ergosterol and sphingolipid species in the immunoisolated secretory vesicles. This finding, for the first time, indicates that the TGN exhibits the capacity to sort membrane lipids. Furthermore, the observation that the immunoisolated vesicles exhibited a higher membrane order than the late Golgi membrane, as measured by C-Laurdan spectrophotometry, strongly suggests that lipid rafts play a role in the TGN-sorting machinery.
引用
收藏
页码:601 / 612
页数:12
相关论文
共 71 条
[1]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[2]   Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast [J].
Bagnat, M ;
Keränen, S ;
Shevchenko, A ;
Shevchenko, A ;
Simons, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3254-3259
[3]   The formation of TGN-to-plasma-membrane transport carriers [J].
Bard, Frederic ;
Malhotra, Vivek .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2006, 22 :439-455
[4]   Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae [J].
Bonangelino, CJ ;
Chavez, EM ;
Bonifacino, JS .
MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (07) :2486-2501
[5]   Evidence for segregation of sphingomyelin and cholesterol during formation of COPI-coated vesicles [J].
Brügger, B ;
Sandhoff, R ;
Wegehingel, S ;
Gorgas, K ;
Malsam, J ;
Helms, JB ;
Lehmann, WD ;
Nickel, W ;
Wieland, FT .
JOURNAL OF CELL BIOLOGY, 2000, 151 (03) :507-517
[6]   The HIV lipidome:: A raft with an unusual composition [J].
Brügger, B ;
Glass, B ;
Haberkant, P ;
Leibrecht, I ;
Wieland, FT ;
Kräusslich, HG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (08) :2641-2646
[7]   Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae [J].
Damm, EM ;
Pelkmans, L ;
Kartenbeck, J ;
Mezzacasa, A ;
Kurzckalia, T ;
Helenius, A .
JOURNAL OF CELL BIOLOGY, 2005, 168 (03) :477-488
[8]  
Daum G, 1998, YEAST, V14, P1471, DOI 10.1002/(SICI)1097-0061(199812)14:16<1471::AID-YEA353>3.0.CO
[9]  
2-Y
[10]  
Eisenkolb M, 2002, MOL BIOL CELL, V13, P4414, DOI 10.1091/mbc.E02-02-0116