Heuristics for the 0-1 multidimensional knapsack problem

被引:50
作者
Boyer, V. [1 ]
Elkihel, M. [1 ]
El Baz, D. [1 ]
机构
[1] Univ Toulouse, CNRS, LAAS, F-31077 Toulouse 4, France
关键词
Multidimensional knapsack problem; Dynamic-programming; Branch-and-cut; Surrogate relaxation; Heuristics; ALGORITHMS;
D O I
10.1016/j.ejor.2007.06.068
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Two heuristics for the 0-1 multidimensional knapsack problem (MKP) are presented. The first one uses Surrogate relaxation, and the relaxed problem is solved via a modified dynamic-programming algorithm. The heuristics provides a feasible solution for (MKP). The second one combines a limited-branch-and-cut-procedure with the previous approach, and tries to improve the bound obtained by exploring some nodes that have been rejected by the modified dynamic-programming algorithm. Computational experiences show that our approaches give better results than the existing heuristics. and thus permit one to obtain a smaller gap between the solution provided and an optimal solution. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:658 / 664
页数:7
相关论文
共 19 条
[1]  
Beasley J.E., 2003, OR LIB
[2]   An approximate dynamic programming approach to multidimensional knapsack problems [J].
Bertsimas, D ;
Demir, R .
MANAGEMENT SCIENCE, 2002, 48 (04) :550-565
[3]  
BOYER V, 2004, METHODES ET OU MIXTE
[4]   Load balancing methods and parallel dynamic programming algorithm using dominance technique applied to the 0-1 knapsack problem [J].
El Baz, D ;
Elkihel, M .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2005, 65 (01) :74-84
[5]   The multidimensional 0-1 knapsack problem:: An overview [J].
Fréville, A .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2004, 155 (01) :1-21
[6]   AN EFFICIENT PREPROCESSING PROCEDURE FOR THE MULTIDIMENSIONAL 0-1-KNAPSACK PROBLEM [J].
FREVILLE, A ;
PLATEAU, G .
DISCRETE APPLIED MATHEMATICS, 1994, 49 (1-3) :189-212
[7]   AN EXACT SEARCH FOR THE SOLUTION OF THE SURROGATE DUAL OF THE 0-1 BIDIMENSIONAL KNAPSACK-PROBLEM [J].
FREVILLE, A ;
PLATEAU, G .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1993, 68 (03) :413-421
[8]  
Garfinkel SR., 1972, INTEGER PROGRAMMING
[9]   EFFICIENT ALGORITHMS FOR SOLVING MULTICONSTRAINT ZERO-ONE KNAPSACK-PROBLEMS TO OPTIMALITY [J].
GAVISH, B ;
PIRKUL, H .
MATHEMATICAL PROGRAMMING, 1985, 31 (01) :78-105
[10]   SURROGATE CONSTRAINTS [J].
GLOVER, F .
OPERATIONS RESEARCH, 1968, 16 (04) :741-&