Familial hemiplegic migraine mutations increase Ca2+ influx through single human CaV2.1 channels and decrease maximal CaV2.1 current density in neurons

被引:199
作者
Tottene, A
Fellin, T
Pagnutti, S
Luvisetto, S
Striessnig, J
Fletcher, C
Pietrobon, D
机构
[1] Univ Padua, Dept Biomed Sci, I-35121 Padua, Italy
[2] Univ Innsbruck, Inst Pharm, Dept Pharmacol & Toxicol, A-6020 Innsbruck, Austria
[3] Novartis Res Fdn, Genom Inst, La Jolla, CA 92037 USA
[4] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA
关键词
D O I
10.1073/pnas.192242399
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Insights into the pathogenesis of migraine with aura may be gained from a study of human Ca(V)2.1 channels containing mutations linked to familial hemiplegic migraine (FHM). Here, we extend the previous single-channel analysis to human Ca(V)2.1 channels containing mutation V1457L. This mutation increased the channel open probability by shifting its activation to more negative voltages and reduced both the unitary conductance and the density of functional channels in the membrane. To investigate the possibility of changes in Ca(V)2.1 function common to all FHM mutations, we calculated the product of single-channel current and open probability as a measure of Ca2+ influx through single Ca(V)2.1 channels. All five FHM mutants analyzed showed a single-channel Ca2+ influx larger than wild type in a broad voltage range around the threshold of activation. We also expressed the FHM mutants in cerebellar granule cells from Ca(V)2.1alpha(1)(-/-) mice rather than HEK293 cells. The FHM mutations invariably led to a decrease of the maximal Ca(V)2.1 current density in neurons. Current densities were similar to wild type at lower voltages because of the negatively shifted activation of FHM mutants. Our data show that mutational changes of functional channel densities can be different in different cell types, and they uncover two functional effects common to all FHM mutations analyzed: increase of single-channel Ca2+ influx and decrease of maximal Ca(V)2.1 current density in neurons. We discuss the relevance of these findings for the pathogenesis of migraine with aura.
引用
收藏
页码:13284 / 13289
页数:6
相关论文
共 41 条
[41]  
Xia ZG, 1996, J NEUROSCI, V16, P5425