Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition

被引:471
作者
Kleinstiver, Benjamin P. [1 ,2 ,3 ,4 ]
Prew, Michelle S. [1 ,2 ,3 ]
Tsai, Shengdar Q. [1 ,2 ,3 ,4 ]
Nguyen, Nhu T. [1 ,2 ,3 ]
Topkar, Ved V. [1 ,2 ,3 ]
Zheng, Zongli [5 ]
Joung, J. Keith [1 ,2 ,3 ,4 ]
机构
[1] Massachusetts Gen Hosp, Mol Pathol Unit, Charlestown, MA 02129 USA
[2] Massachusetts Gen Hosp, Ctr Canc Res, Charlestown, MA USA
[3] Massachusetts Gen Hosp, Ctr Computat & Integrat Biol, Charlestown, MA USA
[4] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA
[5] City Univ Hong Kong, Dept Biomed Sci, Hong Kong, Hong Kong, Peoples R China
基金
美国国家卫生研究院; 加拿大自然科学与工程研究理事会;
关键词
CRYSTAL-STRUCTURE; GUIDE RNA; DUAL-RNA; CAS9; DNA; ENDONUCLEASE; NUCLEASES; EVOLUTION;
D O I
10.1038/nbt.3404
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
CRISPR-Cas9 nucleases target specific DNA sequences using a guide RNA but also require recognition of a protospacer adjacent motif (PAM) by the Cas9 protein. Although longer PAMs can potentially improve the specificity of genome editing, they limit the range of sequences that Cas9 orthologs can target. One potential strategy to relieve this restriction is to relax the PAM recognition specificity of Cas9. Here we used molecular evolution to modify the NNGRRT PAM of Staphylococcus aureus Cas9 (SaCas9). One variant we identified, referred to as KKH SaCas9, showed robust genome editing activities at endogenous human target sites with NNNRRT PAMs, thereby increasing SaCas9 targeting range by two-to fourfold. Using GUIDE-seq, we show that wild-type and KKH SaCas9 induce comparable numbers of off-target effects in human cells. Our strategy for evolving PAM specificity does not require structural information and therefore should be applicable to a wide range of Cas9 orthologs.
引用
收藏
页码:1293 / +
页数:7
相关论文
共 33 条
[1]   Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease [J].
Anders, Carolin ;
Niewoehner, Ole ;
Duerst, Alessia ;
Jinek, Martin .
NATURE, 2014, 513 (7519) :569-+
[2]   BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis [J].
Canver, Matthew C. ;
Smith, Elenoe C. ;
Sher, Falak ;
Pinello, Luca ;
Sanjana, Neville E. ;
Shalem, Ophir ;
Chen, Diane D. ;
Schupp, Patrick G. ;
Vinjamur, Divya S. ;
Garcia, Sara P. ;
Luc, Sidinh ;
Kurita, Ryo ;
Nakamura, Yukio ;
Fujiwara, Yuko ;
Maeda, Takahiro ;
Yuan, Guo-Cheng ;
Zhang, Feng ;
Orkin, Stuart H. ;
Bauer, Daniel E. .
NATURE, 2015, 527 (7577) :192-+
[3]   A highly sensitive selection method for directed evolution of homing endonucleases [J].
Chen, ZL ;
Zhao, HM .
NUCLEIC ACIDS RESEARCH, 2005, 33 (18) :1-7
[4]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[5]   CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting [J].
Courtney, D. G. ;
Moore, J. E. ;
Atkinson, S. D. ;
Maurizi, E. ;
Allen, E. H. A. ;
Pedrioli, D. M. L. ;
McLean, W. H. I. ;
Nesbit, M. A. ;
Moore, C. B. T. .
GENE THERAPY, 2016, 23 (01) :108-112
[6]   CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III [J].
Deltcheva, Elitza ;
Chylinski, Krzysztof ;
Sharma, Cynthia M. ;
Gonzales, Karine ;
Chao, Yanjie ;
Pirzada, Zaid A. ;
Eckert, Maria R. ;
Vogel, Joerg ;
Charpentier, Emmanuelle .
NATURE, 2011, 471 (7340) :602-+
[7]   The new frontier of genome engineering with CRISPR-Cas9 [J].
Doudna, Jennifer A. ;
Charpentier, Emmanuelle .
SCIENCE, 2014, 346 (6213) :1077-+
[8]  
Esvelt KM, 2013, NAT METHODS, V10, P1116, DOI [10.1038/nmeth.2681, 10.1038/NMETH.2681]
[9]   Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems [J].
Fonfara, Ines ;
Le Rhun, Anais ;
Chylinski, Krzysztof ;
Makarova, Kira S. ;
Lecrivain, Anne-Laure ;
Bzdrenga, Janek ;
Koonin, Eugene V. ;
Charpentier, Emmanuelle .
NUCLEIC ACIDS RESEARCH, 2014, 42 (04) :2577-2590
[10]   Improving CRISPR-Cas nuclease specificity using truncated guide RNAs [J].
Fu, Yanfang ;
Sander, Jeffry D. ;
Reyon, Deepak ;
Cascio, Vincent M. ;
Joung, J. Keith .
NATURE BIOTECHNOLOGY, 2014, 32 (03) :279-284