Nanosized corners for trapping and detecting magnetic nanoparticles

被引:59
作者
Donolato, Marco [1 ]
Gobbi, Marco [1 ]
Vavassori, Paolo [2 ,3 ,4 ]
Leone, Marco [1 ]
Cantoni, Matteo [1 ]
Metlushko, Vitali [5 ]
Ilic, Bojan [6 ]
Zhang, Mingliang [7 ,8 ]
wang, Shan X. [7 ,8 ]
Bertacco, Riccardo [1 ]
机构
[1] Politecn Milan, Dipartimento Fis, LNESS, I-22100 Como, Italy
[2] CIC nanoGUNE Consolider, E-20009 San Sebastian, Spain
[3] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy
[4] Univ Ferrara, CNISM, CNR, INFM,Natl Res Ctr S3, I-44100 Ferrara, Italy
[5] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA
[6] Cornell Univ, Cornell Nanofabricat Facil, Ithaca, NY 14853 USA
[7] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[8] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
关键词
MICROBEAD;
D O I
10.1088/0957-4484/20/38/385501
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present a device concept based on controlled micromagnetic configurations in a corner-shaped permalloy nanostructure terminated with two circular disks, specifically designed for the capture and detection of a small number of magnetic beads in suspension. A transverse head-to-head domain wall (TDW) placed at the corner of the structure plays the role of an attracting pole for magnetic beads. The TDW is annihilated in the terminating disks by applying an appropriate magnetic field, whose value is affected by the presence of beads chemically bound to the surface. In the case where the beads are not chemically bound to the surface, the annihilation of the TDW causes their release into the suspension. The variation of the voltage drop across the corner, due to the anisotropic magnetoresistance (AMR) while sweeping the magnetic field, is used to detect the presence of a chemically bound bead. The device response has been characterized by using both synthetic antiferromagnetic nanoparticles (disks of 70 nm diameter and 20 nm height) and magnetic nanobeads, for different thicknesses of the protective capping layer. We demonstrate the detection down to a single nanoparticle, therefore the device holds the potential for the localization and detection of small numbers of molecules immobilized on the particle's functionalized surface.
引用
收藏
页数:6
相关论文
共 18 条
[1]   Detection of a single magnetic microbead using a miniaturized silicon Hall sensor [J].
Besse, PA ;
Boero, G ;
Demierre, M ;
Pott, V ;
Popovic, R .
APPLIED PHYSICS LETTERS, 2002, 80 (22) :4199-4201
[2]   New magnetic tweezers for investigation of the mechanical properties of single DNA molecules [J].
Chiou, CH ;
Huang, YY ;
Chiang, MH ;
Lee, HH ;
Lee, GB .
NANOTECHNOLOGY, 2006, 17 (05) :1217-1224
[3]   Theoretical study of in-plane response of magnetic field sensor to magnetic beads in an in-plane homogeneous field [J].
Damsgaard, Christian Danvad ;
Hansen, Mikkel Fougt .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (06)
[4]   Remote control of cellular behaviour with magnetic nanoparticles [J].
Dobson, Jon .
NATURE NANOTECHNOLOGY, 2008, 3 (03) :139-143
[5]  
Donahue M.J., 1999, OOMMF USERS GUIDE VE
[6]   Planar Hall effect sensor for magnetic micro- and nanobead detection [J].
Ejsing, L ;
Hansen, MF ;
Menon, AK ;
Ferreira, HA ;
Graham, DL ;
Freitas, PP .
APPLIED PHYSICS LETTERS, 2004, 84 (23) :4729-4731
[7]   Magnetoresistive-based biosensors and biochips [J].
Graham, DL ;
Ferreira, HA ;
Freitas, PP .
TRENDS IN BIOTECHNOLOGY, 2004, 22 (09) :455-462
[8]   High-moment antiferromagnetic nanoparticles with tunable magnetic properties [J].
Hu, Wei ;
Wilson, Robert J. ;
Koh, AiLeen ;
Fu, Aihua ;
Faranesh, Anthony Z. ;
Earhart, Christopher M. ;
Osterfeld, Sebastian J. ;
Han, Shu-Jen ;
Xu, Liang ;
Guccione, Samira ;
Sinclair, Robert ;
Wang, Shan X. .
ADVANCED MATERIALS, 2008, 20 (08) :1479-+
[9]   On-chip manipulation and detection of magnetic particles for functional biosensors [J].
Janssen, X. J. A. ;
van IJzendoorn, L. J. ;
Prins, M. W. J. .
BIOSENSORS & BIOELECTRONICS, 2008, 23 (06) :833-838
[10]   An integrated microfluidic cell for detection, manipulation, and sorting of single micron-sized magnetic beads [J].
Jiang, Z. ;
Llandro, J. ;
Mitrelias, T. ;
Bland, J. A. C. .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (08)