Nrf2 possesses a redox-sensitive nuclear exporting signal in the Neh5 transactivation domain

被引:130
作者
Li, Wenge [1 ]
Yu, Si-Wang [1 ]
Kong, A. -N. Tony [1 ]
机构
[1] Rutgers State Univ, Ernest Mario Sch Pharm, Dept Pharmaceut, Piscataway, NJ 08854 USA
关键词
D O I
10.1074/jbc.M602746200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
NF-E2-related factor 2 (Nrf2) is the key transcription factor regulating the antioxidant response. Previous studies identified a nuclear localization signal (NLS) in the basic region and a nuclear exporting signal (NES) in the leucine zipper domain of Nrf2. In this study, we characterize a new functional NES ((175)LLSIPELQCLNI(186)) in the transactivation (TA) domain of Nrf2. A green fluorescence protein (GFP)-tagged Nrf2 segment (amino acids162-295) called GFP-NESTA exhibited a cytosolic distribution that could be disrupted by L184A mutation or leptomycin B treatment. Chimeric expression of this NESTA with a nuclear protein GAL4DBD could expel GAL4DBD into the cytoplasm. A variety of oxidants, including sulforaphane, tert-butylhydroquinone, and H2O2, could effectively induce nuclear translocation of GFP-NESTA. Mutational studies showed that cysteine 183 may mediate the redox response of NESTA. The discovery of multiple NLS/NES motifs in Nrf2 and the redox sensitivity of NESTA imply Nrf2 may be self-sufficient to sense and transduce oxidative signals into the nucleus, consequently initiating antioxidant gene transcription.
引用
收藏
页码:27251 / 27263
页数:13
相关论文
共 62 条
[1]   Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene [J].
Alam, J ;
Stewart, D ;
Touchard, C ;
Boinapally, S ;
Choi, AMK ;
Cook, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (37) :26071-26078
[2]   Site-directed mutagenesis of cysteine to serine in the DNA binding region of Nrf2 decreases its capacity to upregulate antioxidant response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene [J].
Bloom, D ;
Dhakshinamoorthy, S ;
Jaiswal, AK .
ONCOGENE, 2002, 21 (14) :2191-2200
[3]  
Bogerd HP, 1996, MOL CELL BIOL, V16, P4207
[4]   Retinoid X receptor regulates Nur77/thyroid hormone receptor 3-dependent apoptosis by modulating its nuclear export and mitochondrial targeting [J].
Cao, XH ;
Liu, W ;
Lin, F ;
Li, H ;
Kolluri, SK ;
Lin, BZ ;
Han, YH ;
Dawson, MI ;
Zhang, XK .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (22) :9705-9725
[5]   Mutual exclusivity of DNA binding and nuclear localization signal recognition by the yeast transcription factor GAL4: implications for nonviral DNA delivery [J].
Chan, CK ;
Hubner, S ;
Hu, W ;
Jans, DA .
GENE THERAPY, 1998, 5 (09) :1204-1212
[6]   CLONING OF NRF1, AN NF-E2-RELATED TRANSCRIPTION FACTOR, BY GENETIC SELECTION IN YEAST [J].
CHAN, JY ;
HAN, XL ;
KAN, YW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (23) :11371-11375
[7]   Nrf2 is essential for protection against acute pulmonary injury in mice [J].
Chan, KM ;
Kan, YW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (22) :12731-12736
[8]   Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice [J].
Chanas, SA ;
Jiang, Q ;
McMahon, M ;
McWalter, GK ;
McLellan, LI ;
Elcombe, CR ;
Henderson, CJ ;
Wolf, CR ;
Moffat, GJ ;
Itoh, K ;
Yamamoto, M ;
Hayes, JD .
BIOCHEMICAL JOURNAL, 2002, 365 (02) :405-416
[9]   The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: Oxidative stress sensing by a Cul3-Keap1 ligase [J].
Cullinan, SB ;
Gordan, JD ;
Jin, JO ;
Harper, JW ;
Diehl, JA .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (19) :8477-8486
[10]   Utility of siRNA against Keap1 as a strategy to stimulate a cancer chemopreventive phenotype [J].
Devling, TWP ;
Lindsay, CD ;
McLellan, LI ;
McMahon, M ;
Hayes, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (20) :7280-7285