Resetting mechanism of central and peripheral circadian clocks in mammals

被引:199
作者
Hirota, T [1 ]
Fukada, Y [1 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Biophys & Biochem, Bunkyo Ku, Tokyo 1130033, Japan
关键词
circadian clock; oscillation; phase resetting; suprachiasmatic nucleus; light;
D O I
10.2108/zsj.21.359
中图分类号
Q95 [动物学];
学科分类号
071002 ;
摘要
Almost all organisms on earth exhibit diurnal rhythms in physiology and behavior under the control of autonomous time-measuring system called circadian clock. The circadian clock is generally reset by environmental time cues, such as light, in order to synchronize with the external 24-h cycles. In mammals, the core oscillator of the circadian clock is composed of transcription/translation-based negative feedback loops regulating the cyclic expression of a limited number of clock genes (such as Per, Cry, Bmal1, etc.) and hundreds of output genes in a well-concerted manner. The central clock controlling the behavioral rhythm is localized in the hypothalamic suprachiasmatic nucleus (SCN), and peripheral clocks are present in other various tissues. The phase of the central clock is amenable to ambient light signal captured by the visual rod-cone photoreceptors and non-visual melanopsin in the retina. These light signals are transmitted to the SCN through the retinohypothalamic tract, and transduced therein by mitogen-activated protein kinase and other signaling molecules to induce Per gene expression, which eventually elicits phase-dependent phase shifts of the clock. The central clock controls peripheral clocks directly and indirectly by virtue of neural, humoral, and other signals in a coordinated manner. The change in feeding time resets the peripheral clocks in a SCN-independent manner, possibly by food metabolites and body temperature rhythms. In this article, we will provide an overview of recent molecular and genetic studies on the resetting mechanism of the central and peripheral circadian clocks in mammals.
引用
收藏
页码:359 / 368
页数:10
相关论文
共 128 条
[21]   A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock [J].
Ding, JM ;
Buchanan, GF ;
Tischkau, SA ;
Chen, D ;
Kuriashkina, L ;
Faiman, LE ;
Alster, JM ;
McPherson, PS ;
Campbell, KP ;
Gillette, MU .
NATURE, 1998, 394 (6691) :381-384
[22]   Altered patterns of sleep and behavioral adaptability in NPAS2-defficient mice [J].
Dudley, CA ;
Erbel-Sieler, C ;
Estill, SJ ;
Reick, M ;
Franken, P ;
Pitts, S ;
McKnight, SL .
SCIENCE, 2003, 301 (5631) :379-383
[23]   Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells [J].
Duffield, GE ;
Best, JD ;
Meurers, BH ;
Bittner, A ;
Loros, JJ ;
Dunlap, JC .
CURRENT BIOLOGY, 2002, 12 (07) :551-557
[24]   Molecular bases for circadian clocks [J].
Dunlap, JC .
CELL, 1999, 96 (02) :271-290
[25]   The ERK/MAP kinase pathway couples light to immediate-early gene expression in the suprachiasmatic nucleus [J].
Dziema, H ;
Oatis, B ;
Butcher, GQ ;
Yates, R ;
Hoyt, KR ;
Obrietan, K .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2003, 17 (08) :1617-1627
[26]   The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iε [J].
Eide, EJ ;
Vielhaber, EL ;
Hinz, WA ;
Virshup, DM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (19) :17248-17254
[27]   Rhythmic histone acetylation underlies transcription in the mammalian circadian clock [J].
Etchegaray, JP ;
Lee, C ;
Wade, PA ;
Reppert, SM .
NATURE, 2003, 421 (6919) :177-182
[28]   Non-rod, non-cone photoreception in the vertebrates [J].
Foster, RG ;
Hankins, MW .
PROGRESS IN RETINAL AND EYE RESEARCH, 2002, 21 (06) :507-527
[29]   The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo [J].
Fu, LN ;
Pelicano, H ;
Liu, JS ;
Huang, P ;
Lee, CC .
CELL, 2002, 111 (01) :41-50
[30]   Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock [J].
Gau, D ;
Lemberger, T ;
von Gall, C ;
Kretz, O ;
Minh, NL ;
Gass, P ;
Schmid, W ;
Schibler, U ;
Korf, HW ;
Schütz, G .
NEURON, 2002, 34 (02) :245-252