Molecular Simulations for Adsorptive Separation of CO2/CH4 Mixture in Metal-Exposed, Catenated, and Charged Metal-Organic Frameworks

被引:128
作者
Babarao, Ravichandar [1 ]
Jiang, Jianwen [1 ]
Sandler, Stanley I.
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore
基金
新加坡国家研究基金会;
关键词
MONTE-CARLO-SIMULATION; ATOMIC CHARGES; HYDROGEN; CO2; STORAGE; DESIGN; CH4; POTENTIALS; SILICALITE; SORPTION;
D O I
10.1021/la803074g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The adsorption and separation of CO2/CH4 Mixture are studied using molecular simulations in a series of metal-organic frameworks (MOFs) with unique characteristics such as exposed metals (Cu-BTC, PCN-6' and PCN-6), catenation (IRMOF-13 and PCN-6), and extraframework ions (soc-MOF). Because of the strong affinity with the framework, CO2 is preferentially adsorbed over CH4 in all MOFs. Framework catenation leads to constricted pores and additional adsorption sites and enhances the interaction with the adsorbate. Therefore, catenated IRMOF-13 and PCN-6 exhibit a greater extent of adsorption, particularly for CO2, at low pressures than IRMOF-14 and PCN-6'; however, the opposite is true at high pressures. CO2/CH4 Selectivity in IRMOF-1 and IRMOF-14 is almost constant at low pressures and increases with increasing pressure. As a result of a counterbalance between energetic and entropic effects, the selectivity in IRMOF-13 initially decreases at low pressures and then increases with pressure and finally approaches a constant value. Catenated MOFs have a higher selectivity than their non-catenated counterparts. The presence of electrostatic interaction between CO2 and the framework leads to an increase in CO2 adsorption and a corresponding decrease in CH4 adsorption and consequently enhanced selectivity. In charged soc-MOF, the extraframework NO3- ions are identified to be equally distributed from the nearest metal atoms and vibrate around the favorable sites. The selectivity in soc-MOF is substantially higher than in the other IRMOFs and PCNs and is the highest among various MOFs reported to date. The simulation results reveal that the Selectivity of CO2 over CH4 in MOFs is enhanced slightly by exposed metals, catenation, and significantly by extraframework ions and that charged MOFs are promising candidates for the separation of CO2/CH4 mixture.
引用
收藏
页码:5239 / 5247
页数:9
相关论文
共 48 条
  • [1] [Anonymous], 2017, J MOL STRUCT, DOI DOI 10.1016/J.MOLSTRUC.2017.03.014
  • [2] Molecular screening of metal-organic frameworks for CO2 storage
    Babarao, Ravichandar
    Jiang, Jianwen
    [J]. LANGMUIR, 2008, 24 (12) : 6270 - 6278
  • [3] Diffusion and separation of CO2 and CH4 in silicalite, C168 schwarzite,and IRMOF-1:: A comparative study from molecular dynamics simulation
    Babarao, Ravichandar
    Jiang, Jianwen
    [J]. LANGMUIR, 2008, 24 (10) : 5474 - 5484
  • [4] Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1:: A comparative study from monte carlo simulation
    Babarao, Ravichandar
    Hu, Zhongqiao
    Jiang, Jianwen
    Chempath, Shaji
    Sandler, Stanley I.
    [J]. LANGMUIR, 2007, 23 (02) : 659 - 666
  • [5] Exceptionally high CO2 storage in covalent-organic frameworks: Atomistic simulation study
    Babarao, Ravichandar
    Jiang, Jianwen
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (01) : 139 - 143
  • [6] Carborane-based metal-organic frameworks as highly selective sorbents for CO2 over methane
    Bae, Youn-Sang
    Farha, Omar K.
    Spokoyny, Alexander M.
    Mirkin, Chad A.
    Hupp, Joseph T.
    Snurr, Randall Q.
    [J]. CHEMICAL COMMUNICATIONS, 2008, (35) : 4135 - 4137
  • [7] Separation of CO2 from CH4 using mixed-ligand metal-organic frameworks
    Bae, Youn-Sang
    Mulfort, Karen L.
    Frost, Houston
    Ryan, Patrick
    Punnathanam, Sudeep
    Broadbelt, Linda J.
    Hupp, Joseph T.
    Snurr, Randall Q.
    [J]. LANGMUIR, 2008, 24 (16) : 8592 - 8598
  • [8] A microporous metal-organic framework for separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption
    Bastin, Laurent
    Barcia, Patrick S.
    Hurtado, Eric J.
    Silva, Jose A. C.
    Rodrigues, Alirio E.
    Chen, Banglin
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (05) : 1575 - 1581
  • [9] A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL
    BAYLY, CI
    CIEPLAK, P
    CORNELL, WD
    KOLLMAN, PA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) : 10269 - 10280
  • [10] ATOMIC CHARGES DERIVED FROM SEMIEMPIRICAL METHODS
    BESLER, BH
    MERZ, KM
    KOLLMAN, PA
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (04) : 431 - 439