Earth Mover's Distances on Discrete Surfaces

被引:88
作者
Solomon, Justin [1 ]
Rustamov, Raif [1 ]
Guibas, Leonidas [1 ]
Butscher, Adrian [2 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Max Planck Inst Informat, Saarbrucken, Germany
来源
ACM TRANSACTIONS ON GRAPHICS | 2014年 / 33卷 / 04期
基金
美国国家科学基金会;
关键词
Optimal transportation; Wasserstein metric; earth mover's distance; finite elements; geometric median; SUM; ALGORITHM; GEODESICS;
D O I
10.1145/2601097.2601175
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce a novel method for computing the earth mover's distance (EMD) between probability distributions on a discrete surface. Rather than using a large linear program with a quadratic number of variables, we apply the theory of optimal transportation and pass to a dual differential formulation with linear scaling. After discretization using finite elements (FEM) and development of an accompanying optimization method, we apply our new EMD to problems in graphics and geometry processing. In particular, we uncover a class of smooth distances on a surface transitioning from a purely spectral distance to the geodesic distance between points; these distances also can be extended to the volume inside and outside the surface. A number of additional applications of our machinery to geometry problems in graphics are presented.
引用
收藏
页数:12
相关论文
共 58 条
[1]   BARYCENTERS IN THE WASSERSTEIN SPACE [J].
Agueh, Martial ;
Carlier, Guillaume .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) :904-924
[2]  
[Anonymous], 2003, TOPICS OPTIMAL TRANS
[3]  
ARNOLD V., 2003, LECT PARTIAL DIFFERE
[4]   A CONTINUOUS MODEL OF TRANSPORTATION [J].
Beckmann, Martin .
ECONOMETRICA, 1952, 20 (04) :643-660
[5]  
Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
[6]  
Bonneel N., 2013, HAL00881872
[7]  
BONNEEL N., 2011, TOG, V30
[8]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[9]   Practical Anisotropic Geodesy [J].
Campen, Marcel ;
Heistermann, Martin ;
Kobbelt, Leif .
COMPUTER GRAPHICS FORUM, 2013, 32 (05) :63-71
[10]  
Canny J., 1987, 28th Annual Symposium on Foundations of Computer Science (Cat. No.87CH2471-1), P49, DOI 10.1109/SFCS.1987.42