Information-theoretic inequalities for contoured probability distributions

被引:29
作者
Guleryuz, OG
Lutwak, E
Yang, D
Zhang, GY
机构
[1] Polytech Univ, Dept Elect Engn, Brooklyn, NY 11201 USA
[2] Polytech Univ, Dept Math, Brooklyn, NY 11201 USA
关键词
Brunn-Minkowski; convex bodies; elliptically contoured; entropy; Fisher information; inequalities; isoperimetric inequalities;
D O I
10.1109/TIT.2002.800496
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that for a special class of probability distributions that we call contoured distributions, information-theoretic invariants and inequalities are equivalent to geometric invariants and inequalities of bodies in Euclidean space associated with the distributions. Using this, we obtain characterizations of contoured distributions with extremal Shannon and Renyi entropy., We also obtain a new reverse information-theoretic inequality for contoured distributions.
引用
收藏
页码:2377 / 2383
页数:7
相关论文
共 20 条
[11]  
DEMBO A, 1991, 75 STANF U DEP STAT
[12]  
Fang K. T., 1990, GEN MULTIVARIATE ANA
[13]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083
[14]   PROOF OF AN ENTROPY CONJECTURE OF WEHRL [J].
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 62 (01) :35-41
[15]  
LINDENSTRAUSS J, 1995, LOCAL THEORY NORMED, P1149
[16]  
Lutwak E, 2000, DUKE MATH J, V104, P375
[17]  
MILMAN VD, 1989, GEOMETRIC ASPECTS FU, P64
[18]  
Stam A. J., 1959, Inf. Control, V2, P101, DOI DOI 10.1016/S0019-9958(59)90348-1
[20]   ASYMPTOTIC PERFORMANCE OF BLOCK QUANTIZERS WITH DIFFERENCE DISTORTION MEASURES [J].
YAMADA, Y ;
TAZAKI, S ;
GRAY, RM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1980, 26 (01) :6-14