Potentials of arbitrary forces with fractional derivatives

被引:39
作者
Rabei, EM [1 ]
Alhalholy, TS
机构
[1] Mutah Univ, Dept Phys, Al Karak, Jordan
[2] Jordan Univ Sci & Technol, Irbid, Jordan
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2004年 / 19卷 / 17-18期
关键词
nonconservative systems; fractional calculus; Lagrange formulation;
D O I
10.1142/S0217751X04019408
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The Laplace transform of fractional integrals and fractional derivatives is used to develop a general formula for determining the potentials of arbitrary forces: conservative and nonconservative in order to introduce dissipative effects (such as friction) into Lagrangian and Hamiltonian mechanics. The results are found to be in exact agreement with Riewe's results of special cases. Illustrative examples are given.
引用
收藏
页码:3083 / 3092
页数:10
相关论文
共 12 条
[1]  
ARFKEN G, 1985, MATH METHODS PHYS SC
[2]  
Boas ML, 1983, Mathematical Methods in the Physical Sciences, V2nd
[3]  
CARPINTRI A, 1997, FRACTALS FRACTIONAL
[4]  
Celeghini E., 1989, Modern Physics Letters B, V3, P1213, DOI 10.1142/S0217984989001850
[5]   On fractional calculus and fractional multipoles in electromagnetism [J].
Engheta, N .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1996, 44 (04) :554-566
[6]  
Fowles G. R., 1993, ANAL MECH, V5th ed.
[7]  
Goldstein H, 1980, CLASSICAL MECH
[8]  
Morse P. M., 1953, METHODS THEORETICAL, V2
[9]   Nonconservative Lagrangian and Hamiltonian mechanics [J].
Riewe, F .
PHYSICAL REVIEW E, 1996, 53 (02) :1890-1899
[10]   Mechanics with fractional derivatives [J].
Riewe, F .
PHYSICAL REVIEW E, 1997, 55 (03) :3581-3592