The Robin and Wentzell-Robin Laplacians on Lipschitz domains

被引:41
作者
Warma, Mahamadi [1 ]
机构
[1] Univ Puerto Rico, Dept Math, Rio Piedras, PR 00931 USA
关键词
Laplacian; Robin; Wentzell; Robin boundary conditions; holomorphic semigroups;
D O I
10.1007/s00233-006-0617-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let.. RN be a bounded domain with Lipschitz boundary. We prove in the first part that a realization of the Laplacian with Robin boundary conditions partial derivative u/partial derivative nu + beta u = 0 on the boundary partial derivative Omega generates a holomorphic C-0-semigroup of angle pi/2 on C((Omega) over bar) if 0 < beta(0) <= beta is an element of L-infinity(partial derivative Omega). With the same assumption on Omega and assuming that 0 <= beta is an element of L-infinity(partial derivative Omega), we show in the second part that one can define a realization of the Laplacian on C(<(Omega)over bar>) with Wentzell-Robin boundary conditions Delta u + partial derivative u/partial derivative nu + beta u = 0 on the boundary.. and this operator generates a C-0-semigroup.
引用
收藏
页码:10 / 30
页数:21
相关论文
共 21 条
[1]  
[Anonymous], 1989, CAMBRIDGE TRACTS MAT
[2]   The Laplacian with Wentzell-Robin boundary conditions on spaces of continuous functions [J].
Arendt, W ;
Metafune, G ;
Pallara, D ;
Romanelli, S .
SEMIGROUP FORUM, 2003, 67 (02) :247-261
[3]   The Laplacian with Robin boundary conditions on arbitrary domains [J].
Arendt, W ;
Warma, M .
POTENTIAL ANALYSIS, 2003, 19 (04) :341-363
[4]  
Arendt W., 2004, Handb. Differ. Equ., VI, P1
[5]  
Arendt W., 1997, J. Operator Th., V38, P87
[6]  
Arendt W., 2001, VECTOR VALUED LAPLAC, DOI DOI 10.1007/978-3-0348-5075-9
[7]   SOME POTENTIAL-THEORY FOR REFLECTING BROWNIAN-MOTION IN HOLDER AND LIPSCHITZ-DOMAINS [J].
BASS, RF ;
PEI, H .
ANNALS OF PROBABILITY, 1991, 19 (02) :486-508
[8]  
Brezis H., 1999, Analyse fonctionnelle: Theorie et applications
[9]   Robin boundary value problems on arbitrary domains [J].
Daners, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (09) :4207-4236
[10]  
Dautray R., 1988, MATH ANAL NUMERICAL, V2