Fractional Hamiltonian analysis of higher order derivatives systems

被引:65
作者
Baleanu, Dumitru [1 ]
Muslih, Sami I.
Tas, Kenan
机构
[1] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[2] Inst Space Sci, Magurele 76900, Romania
[3] Al Azhar Univ, Dept Phys, Gaza, Palestine, Israel
[4] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy
关键词
D O I
10.1063/1.2356797
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The fractional Hamiltonian analysis of 1+1 dimensional field theory is investigated and the fractional Ostrogradski's formulation is obtained. The fractional path integral of both simple harmonic oscillator with an acceleration-squares part and a damped oscillator are analyzed. The classical results are obtained when fractional derivatives are replaced with the integer order derivatives. (c) 2006 American Institute of Physics.
引用
收藏
页数:8
相关论文
共 46 条
[1]   A general formulation and solution scheme for fractional optimal control problems [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :323-337
[2]   Application of fractional derivatives in thermal analysis of disk brakes [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :191-206
[3]   A new Lagrangian and a new Lagrange equation of motion for fractionally damped systems [J].
Agrawal, OP .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2001, 68 (02) :339-341
[4]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[5]  
Alvarez-Gaumé L, 2001, INT J MOD PHYS A, V16, P1123, DOI 10.1142/S0217751X01002750
[6]  
[Anonymous], QUANTUM FIELD CURVED
[7]   Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Muslih, SI .
PHYSICA SCRIPTA, 2005, 72 (2-3) :119-121
[8]   Lagrangians with linear velocities within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Avkar, T .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (01) :73-79
[9]  
BALEANU D, 2004, P 1 IFAC WORKSH FRAC, P597
[10]  
Bering K., HEPTH0007192