Feasibility of in vivo multichannel optical imaging of gene expression: Experimental study in mice

被引:53
作者
Mahmood, U [1 ]
Tung, CH [1 ]
Tang, Y [1 ]
Weissleder, R [1 ]
机构
[1] Massachusetts Gen Hosp, Ctr Mol Imaging Res, Dept Radiol, Charlestown, MA 02129 USA
关键词
experimental study; genes and genetics; neoplasms; experimental studies;
D O I
10.1148/radiol.2242011589
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PURPOSE: To develop and test a multichannel reflectance imaging system for small animals on the basis of a previously developed single-channel setup. MATERIALS AND METHODS: The imaging system was composed of modular parts, including a light source, excitation filters, emission filters, and a charged-coupled device for recording images. On the basis of generated excitation and absorption spectra of green fluorescent protein (GFP), tricarbocyanine 5.5 (Cy5.5), and indocyanine green (ICG), filters were selected to allow spectral separation and optimize resultant recorded signal. The system was tested by using a combination of the fluorochromes to confirm spectral separation. In vivo tests were performed in nude mice with tumors that expressed cathepsin B, which could be evaluated by using a Cy5.5-based activatable probe and GFP. For each in vivo tumor type and channel, statistical analysis was performed on the basis of signal intensity in the region of interest. RESULTS: The different fluorochromes were readily distinguished with the system; characteristics such as power were determined for all wavelengths. The system demonstrated a linear response for GFP, a monotonic response for Cy5.5 over a range of more than three orders of magnitude of concentration, and a more complex response for ICG. In vivo analysis demonstrated the ability to image GFP expression and cathepsin B expression separately in tumors: As expected, marked differences were observed in GFP-expression imaging between tumor types (1,363 arbitrary units [AU] +/- 236 [SD] vs 110 AU +/- 11 for GFP-positive and GFP-negative tumors, respectively; P < .001), whereas similar cathepsin B expression (1,070 AU 285 vs 1,168 AU 367; P > .5) was observed. Histologic analysis confirmed in vivo findings. CONCLUSION: Imaging multiple gene expressions simultaneously in vivo by using optical imaging is feasible. (C) RSNA, 2002.
引用
收藏
页码:446 / 451
页数:6
相关论文
共 22 条
[1]   Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging [J].
Achilefu, S ;
Dorshow, RB ;
Bugaj, JE ;
Rajagopalan, R .
INVESTIGATIVE RADIOLOGY, 2000, 35 (08) :479-485
[2]   Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands [J].
Becker, A ;
Hessenius, C ;
Licha, K ;
Ebert, B ;
Sukowski, U ;
Semmler, W ;
Wiedenmann, B ;
Grötzinger, C .
NATURE BIOTECHNOLOGY, 2001, 19 (04) :327-331
[3]   Noninvasive functional imaging of human brain using light [J].
Benaron, DA ;
Hintz, SR ;
Villringer, A ;
Boas, D ;
Kleinschmidt, A ;
Frahm, J ;
Hirth, C ;
Obrig, H ;
van Houten, JC ;
Kermit, EL ;
Cheong, WF ;
Stevenson, DK .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2000, 20 (03) :469-477
[4]   The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics [J].
Boas, DA ;
Gaudette, T ;
Strangman, G ;
Cheng, XF ;
Marota, JJA ;
Mandeville, JB .
NEUROIMAGE, 2001, 13 (01) :76-90
[5]   In vivo molecular target assessment of matrix metalloproteinase inhibition [J].
Bremer, C ;
Tung, CH ;
Weissleder, R .
NATURE MEDICINE, 2001, 7 (06) :743-748
[6]   Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform [J].
Bugaj, JE ;
Achilefu, S ;
Dorshow, RB ;
Rajagopalan, R .
JOURNAL OF BIOMEDICAL OPTICS, 2001, 6 (02) :122-133
[7]   Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation [J].
Chance, B .
ADVANCES IN OPTICAL BIOPSY AND OPTICAL MAMMOGRAPHY, 1998, 838 :29-45
[8]   Use of reporter genes for optical measurements of neoplastic disease in vivo [J].
Contag, CH ;
Jenkins, D ;
Contag, FR ;
Negrin, RS .
NEOPLASIA, 2000, 2 (1-2) :41-52
[9]   Bioluminescent indicators in living mammals [J].
Contag, PR ;
Olomu, IN ;
Stevenson, DK ;
Contag, CH .
NATURE MEDICINE, 1998, 4 (02) :245-247
[10]   High resolution in vivo intra-arterial imaging with optical coherence tomography [J].
Fujimoto, JG ;
Boppart, SA ;
Tearney, GJ ;
Bouma, BE ;
Pitris, C ;
Brezinski, ME .
HEART, 1999, 82 (02) :128-133