Orthogonally weaved silver nanowire networks for very efficient organic optoelectronic devices

被引:23
作者
Chiang, Kai-Ming [1 ]
Huang, Zheng-Yu [1 ]
Tsai, Wei-Lun [1 ]
Lin, Hao-Wu [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Mat Sci & Engn, 101,Sect 2,Kuang Fu Rd, Hsinchu 300, Taiwan
关键词
Silver nanowire; Percolation limit; Monte Carlo method; Organic light-emitting diode; Organic solar cell; POLYMER COMPOSITE ELECTRODE; LIGHT-EMITTING-DIODES; FILM SOLAR-CELLS; TRANSPARENT ELECTRODES; HIGHLY TRANSPARENT; CONDUCTIVE FILMS; METAL-OXIDE; MONOLAYERS; SURFACE; ANODES;
D O I
10.1016/j.orgel.2016.12.054
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We demonstrate a simple but effective method to control the orientation of silver nanowires (AgNWs). Shear-flow-induced AgNW preferable orientation is realized by judiciously controlling the process parameters in the bar-coating method. This controllability of the NW direction enables the formation of AgNW cross-linking networks for transparent conductive electrode (TCE) applications. We experimentally demonstrate that the orthogonally weaved AgNW networks possess predominant advantages of lower percolation limit, higher transmission, and lower sheet resistance compared with the randomly orientated AgNW counterparts. The phenomenon is also confirmed with theoretical calculation by the Monte Carlo method. These high-quality AgNW TCEs exhibit a high transmittance of -94% with a sheet resistance of -20 Omega/sq, which meet the requirements of modern optoelectronic devices. Very efficient organic light-emitting diodes (OLED5) and organic solar cells (OSCs) prepared by these AgNW TCEs are demonstrated. The OLED exhibits exceptionally high luminance efficiency, power efficacy, and external quantum efficiency of 92 cd/A, 111 Im/W, and 26.8%, respectively. The OSCs also deliver a high power conversion efficiency of up to 7.5%. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 20
页数:6
相关论文
共 36 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[2]   A Transparent Conductive Adhesive Laminate Electrode for High-Efficiency Organic-Inorganic Lead Halide Perovskite Solar Cells [J].
Bryant, Daniel ;
Greenwood, Peter ;
Troughton, Joel ;
Wijdekop, Maarten ;
Carnie, Mathew ;
Davies, Matthew ;
Wojciechowski, Konrad ;
Snaith, Henry J. ;
Watson, Trystan ;
Worsley, David .
ADVANCED MATERIALS, 2014, 26 (44) :7499-7504
[3]   A solution-processed molybdenum oxide treated silver nanowire network: a highly conductive transparent conducting electrode with superior mechanical and hole injection properties [J].
Chang, Jung-Hao ;
Chiang, Kai-Ming ;
Kang, Hao-Wei ;
Chi, Wei-Jung ;
Chang, Jung-Hung ;
Wu, Chih-I ;
Lin, Hao-Wu .
NANOSCALE, 2015, 7 (10) :4572-4579
[4]   Silver nanowire-polymer composite electrode for high performance solution-processed thin-film transistors [J].
Chen, Liang-Hsiang ;
Lin, Pang ;
Chen, Ming-Chou ;
Huang, Peng-Yi ;
Kim, Choongik ;
Ho, Jia-Chong ;
Lee, Cheng-Chung .
ORGANIC ELECTRONICS, 2012, 13 (10) :1881-1886
[5]  
Garnett EC, 2012, NAT MATER, V11, P241, DOI [10.1038/NMAT3238, 10.1038/nmat3238]
[6]   Smooth Nanowire/Polymer Composite Transparent Electrodes [J].
Gaynor, Whitney ;
Burkhard, George F. ;
McGehee, Michael D. ;
Peumans, Peter .
ADVANCED MATERIALS, 2011, 23 (26) :2905-2910
[7]   Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes [J].
Hau, Steven K. ;
Yip, Hin-Lap ;
Zou, Jingyu ;
Jen, Alex K. -Y. .
ORGANIC ELECTRONICS, 2009, 10 (07) :1401-1407
[8]   Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures [J].
Hecht, David S. ;
Hu, Liangbing ;
Irvin, Glen .
ADVANCED MATERIALS, 2011, 23 (13) :1482-1513
[9]   Large-Scale Assembly of Silicon Nanowire Network-Based Devices Using Conventional Microfabrication Facilities [J].
Heo, Kwang ;
Cho, Eunhee ;
Yang, Jee-Eun ;
Kim, Myoung-Ha ;
Lee, Minbaek ;
Lee, Byung Yang ;
Kwon, Soon Gu ;
Lee, Moon-Sook ;
Jo, Moon-Ho ;
Choi, Heon-Jin ;
Hyeon, Taeghwan ;
Hong, Seunghun .
NANO LETTERS, 2008, 8 (12) :4523-4527
[10]   Percolation in transparent and conducting carbon nanotube networks [J].
Hu, L ;
Hecht, DS ;
Grüner, G .
NANO LETTERS, 2004, 4 (12) :2513-2517