Nighttime removal of NOx in the summer marine boundary layer -: art. no. L07108

被引:122
作者
Brown, SS
Dibb, JE
Stark, H
Aldener, M
Vozella, M
Whitlow, S
Williams, EJ
Lerner, BM
Jakoubek, R
Middlebrook, AM
DeGouw, JA
Warneke, C
Goldan, PD
Kuster, WC
Angevine, WM
Sueper, DT
Quinn, PK
Bates, TS
Meagher, JF
Fehsenfeld, FC
Ravishankara, AR
机构
[1] NOAA, Aeron Lab, Boulder, CO 80305 USA
[2] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[3] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA
[4] Univ New Hampshire, Climate Change Res Ctr, Durham, NH 03824 USA
[5] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA
[6] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
关键词
D O I
10.1029/2004GL019412
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
[1] The nitrate radical, NO3, and dinitrogen pentoxide, N2O5, are two important components of nitrogen oxides that occur predominantly at night in the lower troposphere. Because a large fraction of NO2 reacts to form NO3 and N2O5 during the course of a night, their fate is an important determining factor to the overall fate of NOx (= NO and NO2). As a comprehensive test of nocturnal nitrogen oxide chemistry, concentrations of O-3, NO, NO2, NO3, N2O5, HNO3 and a host of other relevant compounds, aerosol abundance and composition, and meteorological conditions were measured in the marine boundary layer from the NOAA research vessel Ronald H. Brown off the East Coast of the United States as part of the New England Air Quality Study (NEAQS) during the summer of 2002. The results confirm the prominent role of NO3 and N2O5 in converting NOx to HNO3 at night with an efficiency on par with daytime photochemical conversion. The findings demonstrate the large role of nighttime chemistry in determining the NOx budget and consequent production of ozone.
引用
收藏
页码:L071081 / 5
页数:5
相关论文
共 22 条
[1]   The nitrate radical in the remote marine boundary layer [J].
Allan, BJ ;
McFiggans, G ;
Plane, JMC ;
Coe, H ;
McFadyen, GG .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D19) :24191-24204
[2]   Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review [J].
Atkinson, R ;
Arey, J .
ATMOSPHERIC ENVIRONMENT, 2003, 37 :S197-S219
[3]   Applicability of the steady state approximation to the interpretation of atmospheric observations of NO3 and N2O5 -: art. no. 4539 [J].
Brown, SS ;
Stark, H ;
Ravishankara, AR .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D17)
[4]   Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy [J].
Brown, SS ;
Stark, H ;
Ciciora, SJ ;
McLaughlin, RJ ;
Ravishankara, AR .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (09) :3291-3301
[5]   Thermodynamic model of the system H+-NH4+-SO42--NO3--H2O at tropospheric temperatures [J].
Clegg, SL ;
Brimblecombe, P ;
Wexler, AS .
JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (12) :2137-2154
[6]   On alkyl nitrates, O3, and the "missing NOy" -: art. no. 4501 [J].
Day, DA ;
Dillon, MB ;
Wooldridge, PJ ;
Thornton, JA ;
Rosen, RS ;
Wood, EC ;
Cohen, RC .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D16)
[7]   REACTION OF N2O5 ON TROPOSPHERIC AEROSOLS - IMPACT ON THE GLOBAL DISTRIBUTIONS OF NOX, O3, AND OH [J].
DENTENER, FJ ;
CRUTZEN, PJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1993, 98 (D4) :7149-7163
[8]  
Derwent R.G., 1999, REACTIVE HYDROCARBON, P267, DOI [10.1016/B978-012346240-4/50008-4, DOI 10.1016/B978-012346240-4/50008-4]
[9]   Chemistry and oxidation capacity of the nitrate radical in the continental boundary layer near Berlin [J].
Geyer, A ;
Alicke, B ;
Konrad, S ;
Schmitz, T ;
Stutz, J ;
Platt, U .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D8) :8013-8025
[10]   DRY DEPOSITION OF REACTIVE NITROGEN-COMPOUNDS - A REVIEW OF LEAF, CANOPY AND NON-FOLIAR MEASUREMENTS [J].
HANSON, PJ ;
LINDBERG, SE .
ATMOSPHERIC ENVIRONMENT PART A-GENERAL TOPICS, 1991, 25 (08) :1615-1634