Modeling the effect of toroidal plasma rotation on drift-magnetohydrodynamic modes in tokamaks

被引:46
作者
Chapman, I. T. [1 ]
Sharapov, S. E.
Huysmans, G. T. A.
Mikhailovskii, A. B.
机构
[1] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[2] CEA Cadarache, EURATOM Assoc, F-13108 St Paul Les Durance, France
[3] RRC Kurchatov Inst, Inst Nucl Fus, Moscow 123182, Russia
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/1.2212401
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A new code, MISHKA-F (Flow), has been developed as an extension of the ideal magneto-hydrodynamic (MHD) code MISHKA-1 [Mikhailovskii , Plasma Phys. Rep. 23, 844 (1997)] in order to investigate the linear MHD stability of ideal and resistive eigenmodes with respect to the effects of toroidal rotation in tokamaks in general toroidal geometry with the ion diamagnetic drift effect taken into account. Benchmark test results of the MISHKA-F code show good agreement with analytic theory [A. B. Mikhailovskii and S. E. Sharapov, Plasma Phys. Controlled Fusion 42, 57 (2000)] for the stability limits of the ideal n/m=1/1 internal kink mode. The combined stabilizing effects of the ion diamagnetic drift frequency, omega(*i), and the toroidal flow shear are also studied. The omega(*i) stabilization of the internal kink mode is found to be more effective at finite flow shear. Finite-n ballooning modes are studied in plasmas with the toroidal flow shear effect included. The stabilization of the ballooning modes by toroidal rotation is found to agree well with earlier predictions [Webster , Phys. Plasmas 11, 2135 (2004)]. The effect of high flow shear is analyzed for a sawtoothing discharge typical in the Mega Ampere Spherical Tokamak (MAST) [Sykes , Nucl. Fusion 41, 1423 (2001)]. It is found that the ideal n=1 internal kink mode can be stabilized by toroidal rotation at values observed experimentally. (c) 2006 American Institute of Physics.
引用
收藏
页数:12
相关论文
共 25 条
[11]  
HUYSMANS GTA, 1991, P CP90 C COMP PHYS P, P371
[12]   CASTOR: Normal-mode analysis of resistive MHD plasmas [J].
Kerner, W ;
Goedbloed, JP ;
Huysmans, GTA ;
Poedts, S ;
Schwarz, E .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 142 (02) :271-303
[13]   Overview of current density measurements and sawtooth studies on TEXTOR [J].
Koslowski, HR .
FUSION SCIENCE AND TECHNOLOGY, 2005, 47 (02) :260-265
[14]   β-limiting MHD instabilities in improved-performance NSTX spherical torus plasmas [J].
Menard, JE ;
Bell, MG ;
Bell, RE ;
Fredrickson, ED ;
Gates, DA ;
Kaye, SM ;
LeBlanc, BP ;
Maingi, R ;
Mueller, D ;
Sabbagh, SA ;
Stutman, D ;
Bush, CE ;
Johnson, DW ;
Kaita, R ;
Kugel, HW ;
Maqueda, RJ ;
Paoletti, F ;
Paul, SF ;
Ono, M ;
Peng, YKM ;
Skinner, CH ;
Synakowski, EJ .
NUCLEAR FUSION, 2003, 43 (05) :330-340
[15]   Generalized MHD for numerical stability analysis of high-performance plasmas in tokamaks [J].
Mikhailovskii, AB .
PLASMA PHYSICS AND CONTROLLED FUSION, 1998, 40 (11) :1907-1921
[16]  
Mikhailovskii AB, 1997, PLASMA PHYS REP, V23, P844
[17]   MHD modes driven by strong E x B velocity shear in tokamaks [J].
Mikhailovskii, AB ;
Sharapov, SE .
PLASMA PHYSICS AND CONTROLLED FUSION, 2000, 42 (01) :57-70
[18]   STABILIZATION OF BALLOONING MODES WITH SHEARED TOROIDAL ROTATION [J].
MILLER, RL ;
WAELBROECK, FL ;
HASSAM, AB ;
WALTZ, RE .
PHYSICS OF PLASMAS, 1995, 2 (10) :3676-3684
[19]   Exploring a small sawtooth regime in Joint European Torus plasmas with counterinjected neutral beams [J].
Nave, MFF ;
Koslowski, HR ;
Coda, S ;
Graves, J ;
Brix, M ;
Buttery, R ;
Challis, C ;
Giroud, C ;
Stamp, M ;
de Vries, P .
PHYSICS OF PLASMAS, 2006, 13 (01) :1-4
[20]   Energy loss for grassy ELMs and effects of plasma rotation on the ELM characteristics in JT-60U [J].
Oyama, N ;
Sakamoto, Y ;
Isayama, A ;
Takechi, M ;
Gohil, P ;
Lao, LL ;
Snyder, PB ;
Fujita, T ;
Ide, S ;
Kamada, Y ;
Miura, Y ;
Oikawa, T ;
Suzuki, T ;
Takenaga, H ;
Toi, K .
NUCLEAR FUSION, 2005, 45 (08) :871-881