WY-14643 and 9-cis-retinoic acid induce IRS-2/PI 3-kinase signalling pathway and increase glucose transport in human skeletal muscle cells:: differential effect in myotubes from healthy subjects and Type 2 diabetic patients

被引:17
作者
Bouzakri, K
Roques, M
Debard, C
Berbe, V
Rieusset, J
Laville, M
Vidal, H [1 ]
机构
[1] Fac Med RTH Laennec, INSERM, U449, F-69370 Lyon 08, France
[2] Univ Lyon 1, R Laennec Med Fac, INRA U1235, INSERM U449, F-69365 Lyon, France
[3] Univ Lyon 1, R Laennec Med Fac, Human Nutr Res Ctr Lyon, F-69365 Lyon, France
关键词
fibrates; gene expression; glucose uptake; insulin resistance; insulin signalling; nuclear receptors; PI; 3-kinase; rexinoids;
D O I
10.1007/s00125-004-1428-1
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims/hypothesis. To determine the effects of peroxisome proliferator-activated receptor alpha (PPARalpha) and retinoid X receptor (RXR) agonists on insulin action, we investigated the effects of Wy-14643 and 9-cis-retinoic acid (9-cis-RA) on insulin signalling and glucose uptake in human myotubes. Methods. Primary cultures of differentiated human skeletal muscle cells, established from healthy subjects and Type 2 diabetic patients, were used to study the effects of Wy-14643 and 9-cis-RA on the expression and activity of proteins involved in the insulin signalling cascade. Glucose transport was assessed by measuring the rate of [H-3]2-deoxyglucose uptake. Results. Wy-14643 and 9-cis-RA increased IRS-2 and p85alpha phosphatidylinositol 3-kinase (PI 3-kinase) mRNA and protein expression in myotubes from non-diabetic and Type 2 diabetic subjects. This resulted in increased insulin stimulation of protein kinase B phosphorylation and increased glucose uptake in cells from control subjects. Myotubes from diabetic patients displayed marked alterations in the stimulation by insulin of the IRS-1/PI 3-kinase pathway. These alterations were associated with blunted stimulation of glucose transport. Treatment with Wy-14643 and 9-cis-RA did not restore these defects but increased the basal rate of glucose uptake. Conclusions/interpretation. These results demonstrate that PPARalpha and RXR agonists can directly affect insulin signalling in human muscle cells. They also indicate that an increase in the IRS-2/PI 3-kinase pathway does not overcome the impaired stimulation of the IRS-1-dependent pathway and does not restore insulin-stimulated glucose uptake in myotubes from Type 2 diabetic patients.
引用
收藏
页码:1314 / 1323
页数:10
相关论文
共 42 条
[1]   Insulin action in cultured human skeletal muscle cells during differentiation: assessment of cell surface GLUT4 and GLUT1 content [J].
Al-Khalili, L ;
Chibalin, AV ;
Kannisto, K ;
Zhang, BB ;
Permert, J ;
Holman, GD ;
Ehrenborg, E ;
Ding, VDH ;
Zierath, JR ;
Krook, A .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2003, 60 (05) :991-998
[2]   Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation [J].
Bjornholm, M ;
Kawano, Y ;
Lehtihet, M ;
Zierath, JR .
DIABETES, 1997, 46 (03) :524-527
[3]   Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes [J].
Bouzakri, K ;
Roques, M ;
Gual, P ;
Espinosa, S ;
Guebre-Egziabher, F ;
Riou, JP ;
Laville, M ;
Le Marchand-Brustel, Y ;
Tanti, JF ;
Vidal, H .
DIABETES, 2003, 52 (06) :1319-1325
[4]   Glucose transport in cultured human skeletal muscle cells - Regulation by insulin and glucose in nondiabetic and non-insulin-dependent diabetes mellitus subjects [J].
Ciaraldi, TP ;
Abrams, L ;
Nikoulina, S ;
Mudaliar, S ;
Henry, RR .
JOURNAL OF CLINICAL INVESTIGATION, 1995, 96 (06) :2820-2827
[5]   Insulin resistance differentially affects the PI3-kinase- and MAP kinase-mediated signaling in human muscle [J].
Cusi, K ;
Maezono, K ;
Osman, A ;
Pendergrass, M ;
Patti, ME ;
Pratipanawatr, T ;
DeFronzo, RA ;
Kahn, CR ;
Mandarino, LJ .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 105 (03) :311-320
[6]   PATHOGENESIS OF TYPE-2 (NON-INSULIN-DEPENDENT) DIABETES-MELLITUS - A BALANCED OVERVIEW [J].
DEFRONZO, RA .
DIABETOLOGIA, 1992, 35 (04) :389-397
[7]   Peroxisome proliferator-activated receptors: Nuclear control of metabolism [J].
Desvergne, B ;
Wahli, W .
ENDOCRINE REVIEWS, 1999, 20 (05) :649-688
[8]   Regulation by insulin of gene expression in human skeletal muscle and adipose tissue - Evidence for specific defects in type 2 diabetes [J].
Ducluzeau, PH ;
Perretti, N ;
Laville, M ;
Andreelli, F ;
Vega, N ;
Riou, JP ;
Vidal, H .
DIABETES, 2001, 50 (05) :1134-1142
[9]   GENE-EXPRESSION OF GLUT4 IN SKELETAL-MUSCLE FROM INSULIN-RESISTANT PATIENTS WITH OBESITY, IGT, GDM, AND NIDDM [J].
GARVEY, WT ;
MAIANU, L ;
HANCOCK, JA ;
GOLICHOWSKI, AM ;
BARON, A .
DIABETES, 1992, 41 (04) :465-475
[10]   The diabetic phenotype is conserved in myotubes established from diabetic subjects - Evidence for primary defects in glucose transport and glycogen synthase activity [J].
Gaster, M ;
Petersen, I ;
Hojlund, K ;
Poulsen, P ;
Beck-Nielsen, H .
DIABETES, 2002, 51 (04) :921-927