Remodeling of a collagenous tissue at fixed lengths

被引:85
作者
Humphrey, JD [1 ]
机构
[1] Texas A&M Univ, Biomed Engn Program, College Stn, TX 77843 USA
来源
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME | 1999年 / 121卷 / 06期
关键词
D O I
10.1115/1.2800858
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Mature tissues can often adapt to changes in their chemical, mechanical, or thermal environment. For example, in response to sustained increases or decreases in mechanical loads, some tissues grow and remodel so as to restore the stress or strain to its homeostatic state. Whereas most previous work addresses gross descriptors of tissue growth, this paper introduces a possible cell-mediated mechanism by which remodeling may occur in a soft connective tissue-that the kinetics of collagen deposition and degradation is similar regardless of the configuration of the body at which it occurs. The proposed theoretical framework applies to three-dimensional settings, but it is illustrated by focusing on the remodeling of a uniaxial collagenous tissue that is maintained at a fixed length for an extended period. It is shown that qualitative features expected of such remodeling (e.g., an increased compliance and increased stress-free length when remodeling occurs at an extended length) are easily realized. Growth and remodeling are complex phenomena, however, and are likely accomplished via multiple complementary mechanisms. There is a need, therefore, to identify other candidate mechanisms and, of course, to collect experimental data suitable for testing and refining the possible theories.
引用
收藏
页码:591 / 597
页数:7
相关论文
共 34 条
[21]  
Parks WC, 1998, BIOL EXTRAC, P263
[22]  
PATRICK CW, 1998, FRONTIERS TISSUES EN
[23]   Theoretical study of the effect of stress-dependent remodeling on arterial geometry under hypertensive conditions [J].
Rachev, A .
JOURNAL OF BIOMECHANICS, 1997, 30 (08) :819-827
[24]   A CONSTITUTIVE EQUATION FOR NONLINEAR SOLIDS WHICH UNDERGO DEFORMATION INDUCED MICROSTRUCTURAL CHANGES [J].
RAJAGOPAL, KR ;
WINEMAN, AS .
INTERNATIONAL JOURNAL OF PLASTICITY, 1992, 8 (04) :385-395
[25]  
Robert L., 1989, ELASTIN ELASTASES
[26]   STRESS-DEPENDENT FINITE GROWTH IN SOFT ELASTIC TISSUES [J].
RODRIGUEZ, EK ;
HOGER, A ;
MCCULLOCH, AD .
JOURNAL OF BIOMECHANICS, 1994, 27 (04) :455-467
[27]   ANALYTICAL DESCRIPTION OF GROWTH [J].
SKALAK, R ;
DASGUPTA, G ;
MOSS, M ;
OTTEN, E ;
DULLEMEIJER, P ;
VILMANN, H .
JOURNAL OF THEORETICAL BIOLOGY, 1982, 94 (03) :555-577
[28]  
SODEK J, 1988, COLLAGEN REL RES, V8, P11
[29]   A STEREOLOGIC ANALYSIS OF COLLAGEN PHAGOCYTOSIS BY FIBROBLASTS IN 3 SOFT CONNECTIVE TISSUES WITH DIFFERING RATES OF COLLAGEN TURNOVER [J].
SVOBODA, ELA ;
SHIGA, A ;
DEPORTER, DA .
ANATOMICAL RECORD, 1981, 199 (04) :473-480
[30]  
Taber L.A., 1995, APPL MECH REV, V48, P487, DOI [DOI 10.1115/1.3005109, 10.1115/1.3005109]