quantum dots;
photoluminescence;
biological physics;
chemical sensors;
low-dimensional structures;
D O I:
10.1016/j.physe.2004.07.013
中图分类号:
TB3 [工程材料学];
学科分类号:
0805 ;
080502 ;
摘要:
Semiconductor quantum dots (QDs) are nanometer-sized crystals with unique photochemical and photophysical properties that are not available from either isolated molecules or bulk solids. In comparison with organic dyes and fluorescent proteins, these quantum-confined nanoparticles are brighter, more stable against photobleaching, and can be excited for multicolor emission with a single light source. Recent advances have shown that nanometer-sized semiconductor particles can be covalently linked with biorecognition molecules such as peptides, antibodies, nucleic acids, or small-molecule ligands for use as biological labels. High-quality QDs are also well suited for optical encoding and multiplexing applications due to their broad excitation profiles and narrow/symmetric emission spectra. In this article, we discuss recent developments in QD synthesis and bioconjugation, their applications in molecular and cellular imaging, as well as promising directions for future research. (C) 2004 Elsevier B.V. All rights reserved.
机构:
UNIV CALIF BERKELEY, LAWRENCE BERKELEY NATL LAB, DIV MAT SCI, BERKELEY, CA 94720 USAUNIV CALIF BERKELEY, LAWRENCE BERKELEY NATL LAB, DIV MAT SCI, BERKELEY, CA 94720 USA
机构:
UNIV CALIF BERKELEY, LAWRENCE BERKELEY NATL LAB, DIV MAT SCI, BERKELEY, CA 94720 USAUNIV CALIF BERKELEY, LAWRENCE BERKELEY NATL LAB, DIV MAT SCI, BERKELEY, CA 94720 USA