Damage recognition in nucleotide excision repair of DNA

被引:238
作者
Batty, DP [1 ]
Wood, RD [1 ]
机构
[1] Imperial Canc Res Fund, Clare Hall Labs, S Mimms EN6 3LD, Herts, England
关键词
DNA repair; Escherichia coli; human; proteins; UV (ultraviolet) light; xeroderma pipmentosum;
D O I
10.1016/S0378-1119(99)00489-8
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Nucleotide excision repair (NER) is found throughout nature, in eubacteria, eukaryotes and archaea. In human cells it is the main pathway for the removal of damage caused by UV light, but it also acts on a wide variety of other bulky helix-distorting lesions caused by chemical mutagens. An ongoing challenge is to understand how a site of DNA damage is located during NER and distinguished from non-damaged sites. This article reviews information on damage recognition in mammalian cells and the bacterium Escherichia coli. In mammalian cells the XPC-hHR23B, XPA, RPA and TFIIH factors may all have a role in damage recognition. XPC-hHR23B has the strongest affinity for damaged DNA in some assays, as does the similar budding yeast complex Rad4-Rad23. There is current discussion as to whether XPC or XPA acts first in the repair process to recognise damage or distortions. TFIIH may play a role in distinguishing the damaged strand from the non-damaged one, if translocation along a DNA strand by the TFIIH DNA helicases is interrupted by encountering a lesion. The recognition and incision steps of human NER use 15 to 18 polypeptides, whereas E. coli requires only three proteins to obtain a similar result. Despite this, many remarkable similarities in the NER mechanism have emerged between eukaryotes and bacteria. These include use of a distortion-recognition factor, a strand separating helicase to create an open preincision complex, participation of structure-specific endonucleases and the lack of a need for certain factors when a region containing damage is already sufficiently distorted. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:193 / 204
页数:12
相关论文
共 111 条
[1]   MAMMALIAN DNA NUCLEOTIDE EXCISION-REPAIR RECONSTITUTED WITH PURIFIED PROTEIN-COMPONENTS [J].
ABOUSSEKHRA, A ;
BIGGERSTAFF, M ;
SHIVJI, MKK ;
VILPO, JA ;
MONCOLLIN, V ;
PODUST, VN ;
PROTIC, M ;
HUBSCHER, U ;
EGLY, JM ;
WOOD, RD .
CELL, 1995, 80 (06) :859-868
[2]  
ABRAMIC M, 1991, J BIOL CHEM, V266, P22493
[3]   THE XPA PROTEIN IS A ZINC METALLOPROTEIN WITH AN ABILITY TO RECOGNIZE VARIOUS KINDS OF DNA-DAMAGE [J].
ASAHINA, H ;
KURAOKA, I ;
SHIRAKAWA, M ;
MORITA, EH ;
MIURA, N ;
MIYAMOTO, I ;
OHTSUKA, E ;
OKADA, Y ;
TANAKA, K .
MUTATION RESEARCH-DNA REPAIR, 1994, 315 (03) :229-237
[4]   YEAST NUCLEOTIDE EXCISION-REPAIR PROTEINS RAD2 AND RAD4 INTERACT WITH RNA-POLYMERASE-II BASAL TRANSCRIPTION FACTOR-B (TFIIW) [J].
BARDWELL, AJ ;
BARDWELL, L ;
IYER, N ;
SVEJSTRUP, JQ ;
FEAVER, WJ ;
KORNBERG, RD ;
FRIEDBERG, EC .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) :3569-3576
[5]   REACTIONS OF THE UVRABC EXCISION NUCLEASE WITH DNA DAMAGED BY DIAMMINEDICHLOROPLATINUM(II) [J].
BECK, DJ ;
POPOFF, S ;
SANCAR, A ;
RUPP, WD .
NUCLEIC ACIDS RESEARCH, 1985, 13 (20) :7395-7412
[6]   Hepatitis B virus X protein interferes with cellular DNA repair [J].
Becker, SA ;
Lee, TH ;
Butel, JS ;
Slagle, BL .
JOURNAL OF VIROLOGY, 1998, 72 (01) :266-272
[7]   DNA UNWINDING PRODUCED BY SITE-SPECIFIC INTRASTRAND CROSS-LINKS OF THE ANTITUMOR DRUG CIS-DIAMMINEDICHLOROPLATINUM(II) [J].
BELLON, SF ;
COLEMAN, JH ;
LIPPARD, SJ .
BIOCHEMISTRY, 1991, 30 (32) :8026-8035
[8]   Reconstitution of human excision nuclease with recombinant XPF-ERCC1 complex [J].
Bessho, T ;
Sancar, A ;
Thompson, LH ;
Thelen, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (06) :3833-3837
[9]   Excision-repair patch lengths are similar for transcription-coupled repair and global genome repair in UV-irradiated human cells [J].
Bowman, KK ;
Smith, CA ;
Hanawalt, PC .
MUTATION RESEARCH-DNA REPAIR, 1997, 385 (02) :95-105
[10]   Structural features of the minimal DNA binding domain (M98-F219) of human nucleotide excision repair protein XPA [J].
Buchko, GW ;
Ni, SS ;
Thrall, BD ;
Kennedy, MA .
NUCLEIC ACIDS RESEARCH, 1998, 26 (11) :2779-2788