Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data

被引:472
作者
Martins, ES
Stedinger, JR
机构
[1] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA
[2] Governo Estado Ceara, FUNCEME, Fortaleza, Ceara, Brazil
关键词
D O I
10.1029/1999WR900330
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The three-parameter generalized extreme-value (GEV) distribution has found wide application for describing annual floods, rainfall, wind speeds, wave heights, snow depths, and other maxima. Previous studies show that small-sample maximum-likelihood estimators (MLE) of parameters are unstable and recommend L moment estimators. More recent research shows that method of moments quantile estimators have for -0.25 < kappa < 0.30 smaller root-mean-square error than L moments and MLEs. Examination of the behavior of MLEs in small samples demonstrates that absurd values of the GEV-shape parameter kappa can be generated. Use of a Bayesian prior distribution to restrict kappa values to a statistically/physically reasonable range in a generalized maximum likelihood (GML) analysis eliminates this problem. In our examples the GML estimator did substantially better than moment and L moment quantile estimators for -0.4 less than or equal to kappa less than or equal to 0.
引用
收藏
页码:737 / 744
页数:8
相关论文
共 40 条