Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides

被引:1582
作者
Shai, Y [1 ]
机构
[1] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 1999年 / 1462卷 / 1-2期
关键词
antimicrobial peptides; peptide-membrane interaction; lytic peptides;
D O I
10.1016/S0005-2736(99)00200-X
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Permeation of the cell membrane leading to cell death is a mechanism used by a large number of membrane-lytic peptides. Some are linear, mostly helical, and others contain one or more disulfide bonds forming beta-sheet or both beta-sheet and alpha-helix structures. They are all soluble in solution but when they reach the target membrane, conformational changes occur which let them associate with and lyse the membrane. Some lytic peptides are not cell-selective and lyse different microorganisms and normal mammalian cells, while others are specific to either type of cells. Despite extensive studies, the mode of action of membrane-lytic peptides is not fully understood and the basis for their selectivity towards specific target cells is not known. Many studies have shown that peptide-lipid interactions leading to membrane permeation play a major role in their activity. Membrane permeation by amphipathic alpha-helical peptides has been proposed to occur via one of two general mechanisms: (i) transmembrane pore formation via a 'barrel-stave' mechanism; and (ii) membrane destruction/solubilization via a 'carpet' mechanism. This review, which is focused on the different stages of membrane permeation induced by representatives of amphipathic alpha-helical antimicrobial and cell non-selective lytic peptides distinguishes between the 'carpet' mechanism, which holds for antimicrobial peptides versus the 'barrel-stave' mechanism, which holds for cell non-selective lytic peptides. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:55 / 70
页数:16
相关论文
共 124 条
[1]   STRUCTURAL MODEL OF THE PHOSPHOLAMBAN ION-CHANNEL COMPLEX IN PHOSPHOLIPID-MEMBRANES [J].
ARKIN, IT ;
ROTHMAN, M ;
LUDLAM, CFC ;
AIMOTO, S ;
ENGELMAN, DM ;
ROTHSCHILD, KJ ;
SMITH, SO .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 248 (04) :824-834
[2]  
BECHINGER B, 1991, Journal of Biomolecular NMR, V1, P167, DOI 10.1007/BF01877228
[3]   STRUCTURE AND INTERACTIONS OF MAGAININ ANTIBIOTIC PEPTIDES IN LIPID BILAYERS - A SOLID-STATE NUCLEAR-MAGNETIC-RESONANCE INVESTIGATION [J].
BECHINGER, B ;
ZASLOFF, M ;
OPELLA, SJ .
BIOPHYSICAL JOURNAL, 1992, 62 (01) :12-14
[4]   STRUCTURE AND ORIENTATION OF THE ANTIBIOTIC PEPTIDE MAGAININ IN MEMBRANES BY SOLID-STATE NUCLEAR-MAGNETIC-RESONANCE SPECTROSCOPY [J].
BECHINGER, B ;
ZASLOFF, M ;
OPELLA, SJ .
PROTEIN SCIENCE, 1993, 2 (12) :2077-2084
[5]   Structure and functions of channel-forming peptides: Magainins, cecropins, melittin and alamethicin [J].
Bechinger, B .
JOURNAL OF MEMBRANE BIOLOGY, 1997, 156 (03) :197-211
[6]   Membrane-induced step in the activation of Sendai virus fusion protein [J].
Ben-Efraim, I ;
Kliger, Y ;
Hermesh, C ;
Shai, Y .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 285 (02) :609-625
[7]   MELITTIN BINDING TO MIXED PHOSPHATIDYLGLYCEROL PHOSPHATIDYLCHOLINE MEMBRANES [J].
BESCHIASCHVILI, G ;
SEELIG, J .
BIOCHEMISTRY, 1990, 29 (01) :52-58
[8]   ALL-D-MAGAININ - CHIRALITY, ANTIMICROBIAL ACTIVITY AND PROTEOLYTIC RESISTANCE [J].
BESSALLE, R ;
KAPITKOVSKY, A ;
GOREA, A ;
SHALIT, I ;
FRIDKIN, M .
FEBS LETTERS, 1990, 274 (1-2) :151-155
[9]   HEMOLYTIC AND ANTIMICROBIAL ACTIVITIES OF THE 24 INDIVIDUAL OMISSION ANALOGS OF MELITTIN [J].
BLONDELLE, SE ;
HOUGHTEN, RA .
BIOCHEMISTRY, 1991, 30 (19) :4671-4678
[10]  
BOMAN HG, 1995, ANNU REV IMMUNOL, V13, P61, DOI 10.1146/annurev.iy.13.040195.000425