Convergence of a finite volume scheme for nonlinear degenerate parabolic equations

被引:124
作者
Eymard, R
Gallouët, T
Herbin, R
Michel, A
机构
[1] Univ Marne La vallee, F-77454 Marne La Vallee, France
[2] Univ Aix Marseille 1, Ctr Math & Informat, F-13453 Marseille, France
关键词
D O I
10.1007/s002110100342
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One approximates the entropy weak solution u of a nonlinear parabolic degenerate equation u(t) +div(qf(u)) - Deltarho(u) = 0 by a piecewise constant function u(D) using a discretization D in space and time and a finite volume scheme. The convergence of u(D) to u is shown as the size of the space and time steps tend to zero. In a first step, estimates on u(D) are used to prove the convergence, up to a subsequence, of u(D) to a measure valued entropy solution (called here an entropy process solution). A result of uniqueness of the entropy process solution is proved, yielding the strong convergence of u(D) to u. Some numerical results on a model equation are shown.
引用
收藏
页码:41 / 82
页数:42
相关论文
共 22 条
[1]  
Bardos C., 1979, COMMUN PART DIFF EQ, V4, P1017, DOI DOI 10.1080/03605307908820117
[2]  
BENILAN P, 1972, THESIS U ORSAY FRANC
[3]  
BOUCHUT F, 1999, DIFFUSIVE BGK APPROX
[4]  
BREZIS H, 1983, ANALYSE FONCTIONNELL
[5]   Entropy solutions for nonlinear degenerate problems [J].
Carrillo, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 147 (04) :269-361
[6]  
Chainais-Hillairet C, 1999, RAIRO-MATH MODEL NUM, V33, P129
[7]   CONVERGENCE OF AN UPSTREAM FINITE-VOLUME SCHEME FOR A NONLINEAR HYPERBOLIC EQUATION ON A TRIANGULAR MESH [J].
CHAMPIER, S ;
GALLOUET, T ;
HERBIN, R .
NUMERISCHE MATHEMATIK, 1993, 66 (02) :139-157
[8]   Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations [J].
Cockburn, B ;
Gripenberg, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 151 (02) :231-251
[9]  
COCKBURN B, 1994, MATH COMPUT, V63, P77, DOI 10.1090/S0025-5718-1994-1240657-4
[10]   MEASURE-VALUED SOLUTIONS TO CONSERVATION-LAWS [J].
DIPERNA, RJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 88 (03) :223-270