Meanders: exact asymptotics

被引:25
作者
Di Francesco, P [1 ]
Golinelli, O [1 ]
Guitter, E [1 ]
机构
[1] CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France
关键词
meanders; fully packed loop models; Coulomb gas; 2D quantum gravity;
D O I
10.1016/S0550-3213(99)00753-1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We conjecture that meanders are governed by the gravitational version of a c = -4 two-dimensional conformal field theory, allowing for exact predictions for the meander configuration exponent alpha = root 29 (root 29 + root 5) / 12, and the semi-meander exponent <(alpha)over bar> = 1 root 11(root 29 + root 5)/24. This result follows from an interpretation of meanders as pairs of fully packed loops on a random surface, described by two c = -2 free fields. The above values agree with recent numerical estimates. We generalize these results to a score of meandric numbers with various geometries and arbitrary loop fugacities. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:699 / 712
页数:14
相关论文
共 24 条
[21]   A MAP-FOLDING PROBLEM [J].
LUNNON, WF .
MATHEMATICS OF COMPUTATION, 1968, 22 (101) :193-&
[22]   Strings, matrix models, and meanders [J].
Makeenko, Y .
NUCLEAR PHYSICS B, 1996, :226-237
[23]   Fermionic matrix models [J].
Semenoff, GW ;
Szabo, RJ .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (12) :2135-2291
[24]   *CONTRIBUTION A LETUDE DU PROBLEME DES TIMBRES POSTE [J].
TOUCHARD, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1950, 2 (04) :385-398