Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase β

被引:187
作者
Stahmann, Nadine
Woods, Angela
Carling, David
Heller, Regine
机构
[1] Univ Jena, Inst Mol Cell Biol, D-07743 Jena, Germany
[2] Univ London Imperial Coll Sci Technol & Med, Hammersmith Hosp, MRC, Ctr Clin Sci,Cellular Stress Grp, London, England
基金
英国医学研究理事会;
关键词
D O I
10.1128/MCB.00383-06
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
AMP-activated protein kinase (AMPK) is a sensor of cellular energy state in response to metabolic stress and other regulatory signals. AMPK is controlled by upstream kinases which have recently been identified as LKB1 or Ca2(+)/calmodulin-dependent protein kinase kinase beta (CaMKK beta). Our study of human endothelial cells shows that AMPK is activated by thrombin through a Ca2+-dependent mechanism involving the thrombin receptor protease-activated receptor 1 and G.-protein-mediated phospholipase C activation. Inhibition of CaMKK with STO-609 or downregulation of CaMKK beta using RNA interference decreased thrombin-induced AMPK activation significantly, indicating that CaMKK beta was the responsible AMPK kinase. In contrast, downregulation of LKB1 did not affect thrombin-induced AMPK activation but abolished phosphorylation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleoside. Thrombin stimulation led to phosphorylation of acetyl coenzyme A carboxylase (ACC) and endothelial nitric oxide synthase (eNOS), two downstream targets of AMPK. Inhibition or downregulation of CaMKK beta or AMPK abolished phosphorylation of ACC in response to thrombin but had no effect on eNOS phosphorylation, indicating that thrombin-stimulated phosphorylation of eNOS is not mediated by AMPK. Our results underline the role of Ca2+ as a regulator of AMPK activation in response to a physiologic stimulation. We also demonstrate that endothelial cells possess two pathways to activate AMPK, one Ca2+/CaMKK beta dependent and one AMP/LKB1 dependent.
引用
收藏
页码:5933 / 5945
页数:13
相关论文
共 49 条
[1]   Hypoxic modulation of Ca2+ signaling in human venous endothelial cells -: Multiple roles for reactive oxygen species [J].
Aley, PK ;
Porter, KE ;
Boyle, JP ;
Kemp, PJ ;
Peers, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (14) :13349-13354
[2]   Molecular mechanisms of thrombin-induced endothelial cell permeability [J].
Bogatcheva, NV ;
Garcia, JGN ;
Verin, AD .
BIOCHEMISTRY-MOSCOW, 2002, 67 (01) :75-84
[3]   Regulation of endothelial cell barrier function by calcium/calmodulin-dependent protein kinase II [J].
Borbiev, T ;
Verin, AD ;
Shi, S ;
Liu, F ;
Garcia, JGN .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2001, 280 (05) :L983-L990
[4]   AMPK inhibits fatty acid-induced increases in NF-κB transactivation in cultured human umbilical vein endothelial cells [J].
Cacicedo, JM ;
Yagihashi, N ;
Keaney, JF ;
Rudermann, NB ;
Ido, Y .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 324 (04) :1204-1209
[5]   The AMP-activated protein kinase cascade - a unifying system for energy control [J].
Carling, D .
TRENDS IN BIOCHEMICAL SCIENCES, 2004, 29 (01) :18-24
[6]   Adiponectin stimulates production of nitric oxide in vascular endothelial cells [J].
Chen, H ;
Montagnani, M ;
Funahashi, T ;
Shimomura, I ;
Quon, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (45) :45021-45026
[7]   AMP-activated protein kinase phosphorylation of endothelial NO synthase [J].
Chen, ZP ;
Mitchelhill, KI ;
Michell, BJ ;
Stapleton, D ;
Rodriguez-Crespo, I ;
Witters, LA ;
Power, DA ;
de Montellano, PRO ;
Kemp, BE .
FEBS LETTERS, 1999, 443 (03) :285-289
[8]   Protease-activated receptors in hemostasis, thrombosis and vascular biology [J].
Coughlin, SR .
JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2005, 3 (08) :1800-1814
[9]   The effect of AMP-activated protein kinase and its activator AICAR on the metabolism of human umbilical vein endothelial cells [J].
Dagher, Z ;
Ruderman, N ;
Tornheim, K ;
Ido, Y .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 265 (01) :112-115
[10]   TISSUE DISTRIBUTION OF THE AMP-ACTIVATED PROTEIN-KINASE, AND LACK OF ACTIVATION BY CYCLIC-AMP-DEPENDENT PROTEIN-KINASE, STUDIED USING A SPECIFIC AND SENSITIVE PEPTIDE ASSAY [J].
DAVIES, SP ;
CARLING, D ;
HARDIE, DG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1989, 186 (1-2) :123-128