Advancing Drug Discovery via Artificial Intelligence

被引:336
作者
Chan, H. C. Stephen [1 ,2 ]
Shan, Hanbin [3 ]
Dahoun, Thamani [2 ,4 ]
Vogel, Horst [2 ,4 ]
Yuan, Shuguang [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Res Ctr Comp Aided Drug Discovery, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[2] AlphaMol Sci Ltd, CH-4123 Allschwil, Switzerland
[3] Shanghai Inst Pharmaceut Ind, Shanghai 200040, Peoples R China
[4] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn ISIC, CH-1015 Lausanne, Switzerland
关键词
MATCHED MOLECULAR PAIRS; DEEP NEURAL-NETWORKS; PHYSICAL-PROPERTIES; AUTOMATED SYNTHESIS; YIELD PREDICTION; MACHINE; COMPUTER; DESIGN; DOCKING; BINDING;
D O I
10.1016/j.tips.2019.06.004
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Drug discovery and development are among the most important translational science activities that contribute to human health and wellbeing. However, the development of a new drug is a very complex, expensive, and long process which typically costs 2.6 billion USD and takes 12 years on average. How to decrease the costs and speed up new drug discovery has become a challenging and urgent question in industry. Artificial intelligence (AI) combined with new experimental technologies is expected to make the hunt for new pharmaceuticals quicker, cheaper, and more effective. We discuss here emerging applications of AI to improve the drug discovery process.
引用
收藏
页码:592 / 604
页数:13
相关论文
共 105 条
[41]   Controlling an organic synthesis robot with machine learning to search for new reactivity [J].
Granda, Jaroslaw M. ;
Donina, Liva ;
Dragone, Vincenza ;
Long, De-Liang ;
Cronin, Leroy .
NATURE, 2018, 559 (7714) :377-+
[42]   Empirical Scoring Functions for Structure-Based Virtual Screening: Applications, Critical Aspects, and Challenges [J].
Guedes, Isabella A. ;
Pereira, Felipe S. S. ;
Dardenne, Laurent E. .
FRONTIERS IN PHARMACOLOGY, 2018, 9
[43]   Mixed Quantum Mechanics/Molecular Mechanics Scoring Function To Predict Protein-Ligand Binding Affinity [J].
Hayik, Seth A. ;
Dunbrack, Roland, Jr. ;
Merz, Kenneth M., Jr. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (10) :3079-3091
[44]   HE BODY SEEN FROM THE NUDIST MOVEMENT: RIO DE JANEIRO IN THE 1950s [J].
Herold Junior, Carlos ;
Machado, Alisson Bertao ;
Campanholi, Carolini Aparecida ;
Solera, Bruna ;
Gil Parizotto, Pedro Gabriel .
MOVIMENTO, 2018, 24 (01) :49-64
[45]   Governance of automated image analysis and artificial intelligence analytics in healthcare [J].
Ho, C. W. L. ;
Soon, D. ;
Caals, K. ;
Kapur, J. .
CLINICAL RADIOLOGY, 2019, 74 (05) :329-337
[46]   Accurate Prediction of Biological Assays with High-Throughput Microscopy Images and Convolutional Networks [J].
Hofmarcher, Markus ;
Rumetshofer, Elisabeth ;
Clevert, Djork-Arne ;
Hochreiter, Sepp ;
Klambauer, Guenter .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (03) :1163-1171
[47]   KDEEP: Protein-Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks [J].
Jimenez, Jose ;
Skalic, Miha ;
Martinez-Rosell, Gerard ;
De Fabritiis, Gianni .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (02) :287-296
[48]  
Joulin A., 2015, P ADV NEUR INF PROC, V28, P190
[49]   Pathway databases: A case study in computational symbolic theories [J].
Karp, PD .
SCIENCE, 2001, 293 (5537) :2040-2044
[50]   Learning to Predict Chemical Reactions [J].
Kayala, Matthew A. ;
Azencott, Chloe-Agathe ;
Chen, Jonathan H. ;
Baldi, Pierre .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2011, 51 (09) :2209-2222