Evidence for a novel domain of bacterial outer membrane ushers

被引:17
作者
Capitani, Guido [1 ]
Eidam, Oliv [1 ]
Gruetter, Markus G. [1 ]
机构
[1] Univ Zurich, Inst Biochem, CH-8057 Zurich, Switzerland
关键词
bacterial pili; outer membrane assembly platforms (ushers); chaperone-usher pathway; structure prediction; new domain; fold recognition;
D O I
10.1002/prot.21147
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many pathogenic bacteria possess adhesive surface organelles (called pili), anchored to their outer membrane, which mediate the first step of infection by binding to host tissue. Pilus biogenesis occurs via the "chaperone-usher" pathway: the usher, a large outer membrane protein, binds complexes of a periplasmic chaperone with pilus subunits, unloads the subunits from the chaperone, and assembles them into the pilus, which is extruded into the extracellular space. Ushers comprise an N-terminal periplasmic domain, a large transmembrane beta-barrel central domain, and a C-terminal periplasmic domain. Since structural data are available only for the N-terminal domain, we performed an in-depth bioinformatic analysis of bacterial ushers. Our analysis led us to the conclusion that the transmembrane beta-barrel region of ushers contains a so far unrecognized soluble domain, the "middle domain", which possesses a P-sandwich fold. Two other bacterial beta-sandwich domains, the TT0351 protein from Thermus thermophilus and the carbohydrate binding module CBM36 from Paenibacillus polymyxa, are possible distant relatives of the usher "middle domain". Several mutations reported to abolish in vivo pilus formation cluster in this region, underlining its functional importance.
引用
收藏
页码:816 / 823
页数:8
相关论文
共 34 条
[1]   Combining prediction of secondary structure and solvent accessibility in proteins [J].
Adamczak, R ;
Porollo, A ;
Meller, J .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 59 (03) :467-475
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]  
[Anonymous], BIOINFORMATICS
[4]  
[Anonymous], 1997, EMBnet News
[5]  
Apweiler R, 2004, NUCLEIC ACIDS RES, V32, pD115, DOI [10.1093/nar/gkw1099, 10.1093/nar/gkh131]
[6]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[7]   Improved prediction of signal peptides: SignalP 3.0 [J].
Bendtsen, JD ;
Nielsen, H ;
von Heijne, G ;
Brunak, S .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (04) :783-795
[8]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[9]   Predicting transmembrane beta-barrels in proteomes [J].
Bigelow, HR ;
Petrey, DS ;
Liu, J ;
Przybylski, D ;
Rost, B .
NUCLEIC ACIDS RESEARCH, 2004, 32 (08) :2566-2577
[10]   JPred: a consensus secondary structure prediction server [J].
Cuff, JA ;
Clamp, ME ;
Siddiqui, AS ;
Finlay, M ;
Barton, GJ .
BIOINFORMATICS, 1998, 14 (10) :892-893