Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics

被引:189
作者
Zaslavsky, GM
Edelman, M
Niyazov, BA
机构
[1] NYU, DEPT PHYS, NEW YORK, NY 10003 USA
[2] COLUMBIA UNIV, NEW YORK, NY 10027 USA
关键词
D O I
10.1063/1.166252
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A derailed description of fractional kinetics is given in connection to islands' topology in the phase space of a system. The method of renormalization group is applied to the fractional kinetic equation in order to obtain characteristic exponents of the fractional space and time derivatives, and an analytic expression for the transport exponents. Numerous simulations for the web-map and standard map demonstrate different results of the theory. Special attention is applied to study the singular zone, a domain near the island boundary with a self-similar hierarchy of subislands. The birth and collapse of islands of different types are considered. (C) 1997 American Institute of Physics.
引用
收藏
页码:159 / 181
页数:23
相关论文
共 80 条
[21]   GENERAL-APPROACH TO DIFFUSION OF PERIODICALLY KICKED CHARGES IN A MAGNETIC-FIELD [J].
DANA, I ;
AMIT, M .
PHYSICAL REVIEW E, 1995, 51 (04) :R2731-R2734
[22]   DIFFUSION IN THE STANDARD MAP [J].
DANA, I ;
FISHMAN, S .
PHYSICA D, 1985, 17 (01) :63-74
[23]   ALGEBRAIC ESCAPE IN HIGHER DIMENSIONAL HAMILTONIAN-SYSTEMS [J].
DING, MZ ;
BOUNTIS, T ;
OTT, E .
PHYSICS LETTERS A, 1990, 151 (08) :395-400
[24]   STOCHASTICITY IN CLASSICAL HAMILTONIAN-SYSTEMS - UNIVERSAL ASPECTS [J].
ESCANDE, DF .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 121 (3-4) :165-261
[25]   CHAOTIC DIFFUSION AND 1/F-NOISE OF PARTICLES IN TWO-DIMENSIONAL SOLIDS [J].
GEISEL, T ;
ZACHERL, A ;
RADONS, G .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1988, 71 (01) :117-127
[26]   GENERIC 1/F NOISE IN CHAOTIC HAMILTONIAN-DYNAMICS [J].
GEISEL, T ;
ZACHERL, A ;
RADONS, G .
PHYSICAL REVIEW LETTERS, 1987, 59 (22) :2503-2506
[27]  
GEISEL T, 1985, PHYS REV LETT, V54, P616, DOI 10.1103/PhysRevLett.54.616
[28]  
GELFAND IM, 1964, GENERALIZED FUNCTION, V1
[29]   UNIVERSAL BEHAVIOR IN FAMILIES OF AREA-PRESERVING MAPS [J].
GREENE, JM ;
MACKAY, RS ;
VIVALDI, F ;
FEIGENBAUM, MJ .
PHYSICA D-NONLINEAR PHENOMENA, 1981, 3 (03) :468-486
[30]   THEORY OF DYNAMIC CRITICAL PHENOMENA [J].
HOHENBERG, PC ;
HALPERIN, BI .
REVIEWS OF MODERN PHYSICS, 1977, 49 (03) :435-479