Biodegradable polyester elastomers in tissue engineering

被引:163
作者
Webb, AR [1 ]
Yang, J [1 ]
Ameer, GA [1 ]
机构
[1] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA
关键词
biodegradable elastomer; blood vessels; caprolactone; citric acid; glycerol; heart valves; polyester; polyhydraxyalkanoates; scaffolds; tissue engineering; trimethylene carbonate;
D O I
10.1517/14712598.4.6.801
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Tissue engineering often makes use of biodegradable scaffolds to guide and promote controlled cellular growth and differentiation in order to generate new tissue. There has been significant research regarding the effects of scaffold surface chemistry and degradation rate on tissue formation and the importance of these parameters is widely recognised. Nevertheless, studies describing the role of mechanical stimuli during tissue development and function suggest that the mechanical properties of the scaffold will also be important. In particular, scaffold mechanics should be taken into account if mechanical stimulation, such as cyclic strain, will be incorporated into strategies to grow improved tissues or the target tissue to be replaced has elastomeric properties. Biodegradable polyesters, such as polyglycolide, polylactide and poly(lactide-co-glycolide), although commonly used in tissue engineering, undergo plastic deformation and failure when exposed to long-term cyclic strain, limiting their use in engineering elastomeric tissues. This review will cover the latest advances in the development of biodegradable polyester elastomers for use as scaffolds to engineer tissues, such as heart valves and blood vessels.
引用
收藏
页码:801 / 812
页数:12
相关论文
共 110 条
[1]   Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates [J].
Aldor, AS ;
Keasling, JD .
CURRENT OPINION IN BIOTECHNOLOGY, 2003, 14 (05) :475-483
[2]  
Ballyk PD, 1998, J BIOMECH, V31, P229, DOI 10.1016/S0197-3975(97)00111-5
[3]   MONOCRYL(R) SUTURE, A NEW ULTRA-PLIABLE ABSORBABLE MONOFILAMENT SUTURE [J].
BEZWADA, RS ;
JAMIOLKOWSKI, DD ;
LEE, IY ;
AGARWAL, V ;
PERSIVALE, J ;
TRENKABENTHIN, S ;
ERNETA, M ;
SURYADEVARA, J ;
YANG, A ;
LIU, S .
BIOMATERIALS, 1995, 16 (15) :1141-1148
[4]   DEGRADATION OF AND TISSUE REACTION TO BIODEGRADABLE POLY(L-LACTIDE) FOR USE AS INTERNAL-FIXATION OF FRACTURES - A STUDY IN RATS [J].
BOS, RRM ;
ROZEMA, FR ;
BOERING, G ;
NIJENHUIS, AJ ;
PENNINGS, AJ ;
VERWEY, AB ;
NIEUWENHUIS, P ;
JANSEN, HWB .
BIOMATERIALS, 1991, 12 (01) :32-36
[5]  
BUSCHMANN MD, 1995, J CELL SCI, V108, P1497
[6]   Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow [J].
Buschmann, MD ;
Kim, YJ ;
Wong, M ;
Frank, E ;
Hunziker, EB ;
Grodzinsky, AJ .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1999, 366 (01) :1-7
[7]  
CHANDRAN KB, 1992, CARDIOVASCULAR BIOME
[8]   Preparation and characterization of biodegradable PLA polymeric blends [J].
Chen, CC ;
Chueh, JY ;
Tseng, H ;
Huang, HM ;
Lee, SY .
BIOMATERIALS, 2003, 24 (07) :1167-1173
[9]  
CHU CC, 1989, SURG GYNECOL OBSTET, V168, P233
[10]  
Dahms SE, 1998, BRIT J UROL, V82, P411