Binding of α-actinin to titin:: Implications for Z-disk assembly

被引:42
作者
Atkinson, RA
Joseph, C
Dal Piaz, F
Birolo, L
Stier, G
Pucci, P
Pastore, A
机构
[1] Natl Inst Med Res, Div Mol Struct, London NW7 1AA, England
[2] Univ Naples Federico II, Dipartimento Chim Organ & Biol, Naples, Italy
[3] Univ Naples Federico II, CNR, Ctr Int Servizi Spettrometria Massa, Naples, Italy
[4] European Mol Biol Lab, Heidelberg, Germany
基金
英国医学研究理事会;
关键词
D O I
10.1021/bi991891u
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Titin is an exceptionally large protein (M.Wt. similar to 3 MDa) that spans half the sarcomere in muscle, from the Z-disk to the M-line. In the Z-disk, it interacts with alpha-actinin homodimers that are a principal component of the Z-fiIaments linking actin filaments. The interaction between titin and alpha-actinin involves repeating similar to 45 amino acid sequences (Z-repeats) near the N-terminus of titin and the C-lobe of the C-terrninal calmodulin-like domain of alpha-actinin. The conformation of Z-repeat 7 (ZR7) of titin when complexed with the 73-amino acid C-terminal portion of alpha-actinin (EF34) was studied by heteronuclear NMR spectroscopy using N-15-labeling of ZR7 and found to be helical over a stretch of 18 residues. Complex formation resulted in the protection of one site of preferential cleavage of EF34 at Phe14-Leu17, as determined by limited proteolysis experiments coupled to mass spectrometry measurements. Intermolecular NOEs show Val16 of ZR7 to be positioned close in space to the backbone of EF34 around Phe14. These observations suggest that the mode of binding of ZR7 to EF34 is similar to that of troponin I to troponin C and of peptide C20W to calmodulin. These complexes would appear to represent a general alternative binding mode of calmodulin-like domains to target peptides.
引用
收藏
页码:5255 / 5264
页数:10
相关论文
共 66 条
[1]  
BARTELS C, 1995, J BIOMOL NMR, V5, P1
[2]   MLEV-17-BASED TWO-DIMENSIONAL HOMONUCLEAR MAGNETIZATION TRANSFER SPECTROSCOPY [J].
BAX, A ;
DAVIS, DG .
JOURNAL OF MAGNETIC RESONANCE, 1985, 65 (02) :355-360
[3]  
BEGGS AH, 1992, J BIOL CHEM, V267, P9281
[4]   NATURAL ABUNDANCE N-15 NMR BY ENHANCED HETERONUCLEAR SPECTROSCOPY [J].
BODENHAUSEN, G ;
RUBEN, DJ .
CHEMICAL PHYSICS LETTERS, 1980, 69 (01) :185-189
[5]   COHERENCE TRANSFER BY ISOTROPIC MIXING - APPLICATION TO PROTON CORRELATION SPECTROSCOPY [J].
BRAUNSCHWEILER, L ;
ERNST, RR .
JOURNAL OF MAGNETIC RESONANCE, 1983, 53 (03) :521-528
[6]  
CANTOR CR, 1980, BIOPHYSICAL CHEM 1
[7]   NMRPIPE - A MULTIDIMENSIONAL SPECTRAL PROCESSING SYSTEM BASED ON UNIX PIPES [J].
DELAGLIO, F ;
GRZESIEK, S ;
VUISTER, GW ;
ZHU, G ;
PFEIFER, J ;
BAX, A .
JOURNAL OF BIOMOLECULAR NMR, 1995, 6 (03) :277-293
[8]  
Eilertsen KJ, 1997, EUR J CELL BIOL, V74, P361
[9]   NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump [J].
Elshorst, B ;
Hennig, M ;
Försterling, H ;
Diener, A ;
Maurer, M ;
Schulte, P ;
Schwalbe, H ;
Griesinger, C ;
Krebs, J ;
Schmid, H ;
Vorherr, T ;
Carafoli, E .
BIOCHEMISTRY, 1999, 38 (38) :12320-12332
[10]   THE TROPONIN COMPLEX AND REGULATION OF MUSCLE-CONTRACTION [J].
FARAH, CS ;
REINACH, FC .
FASEB JOURNAL, 1995, 9 (09) :755-767