The architecture of complex weighted networks

被引:2844
作者
Barrat, A
Barthélemy, M
Pastor-Satorras, R
Vespignani, A
机构
[1] Univ Paris 11, UMR CNRS 8627, Phys Theor Lab, F-91405 Orsay, France
[2] CEA, Dept Phys Theor & Appl, F-91191 Gif Sur Yvette, France
[3] Univ Politecn Cataluna, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain
关键词
D O I
10.1073/pnas.0400087101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Networked structures arise in a wide array of different contexts such as technological and transportation infrastructures, social phenomena, and biological systems. These highly interconnected systems have recently been the focus of a great deal of attention that has uncovered and characterized their topological complexity. Along with a complex topological structure, real networks display a large heterogeneity in the capacity and intensity of the connections. These features, however, have mainly not been considered in past studies where links are usually represented as binary states, i.e., either present or absent. Here, we study the scientific collaboration network and the world-wide air-transportation network, which are representative examples of social and large infrastructure systems, respectively. In both cases it is possible to assign to each edge of the graph a weight proportional to the intensity or capacity of the connections among the various elements of the network. We define appropriate metrics combining weighted and topological observables that enable us to characterize the complex statistical properties and heterogeneity of the actual strength of edges and vertices. This information allows us to investigate the correlations among weighted quantities and the underlying topological structure of the network. These results provide a better description of the hierarchies and organizational principles at the basis of the architecture of weighted networks.
引用
收藏
页码:3747 / 3752
页数:6
相关论文
共 24 条
  • [1] Statistical mechanics of complex networks
    Albert, R
    Barabási, AL
    [J]. REVIEWS OF MODERN PHYSICS, 2002, 74 (01) : 47 - 97
  • [2] Error and attack tolerance of complex networks
    Albert, R
    Jeong, H
    Barabási, AL
    [J]. NATURE, 2000, 406 (6794) : 378 - 382
  • [3] Classes of small-world networks
    Amaral, LAN
    Scala, A
    Barthélémy, M
    Stanley, HE
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (21) : 11149 - 11152
  • [4] Evolution of the social network of scientific collaborations
    Barabási, AL
    Jeong, H
    Néda, Z
    Ravasz, E
    Schubert, A
    Vicsek, T
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 311 (3-4) : 590 - 614
  • [5] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [6] A faster algorithm for betweenness centrality
    Brandes, U
    [J]. JOURNAL OF MATHEMATICAL SOCIOLOGY, 2001, 25 (02) : 163 - 177
  • [7] Network robustness and fragility: Percolation on random graphs
    Callaway, DS
    Newman, MEJ
    Strogatz, SH
    Watts, DJ
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (25) : 5468 - 5471
  • [8] CLARK J, 1998, 1 LOOK GRAPH THEORY
  • [9] Resilience of the Internet to random breakdowns
    Cohen, R
    Erez, K
    ben-Avraham, D
    Havlin, S
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (21) : 4626 - 4628
  • [10] Evolution of networks
    Dorogovtsev, SN
    Mendes, JFF
    [J]. ADVANCES IN PHYSICS, 2002, 51 (04) : 1079 - 1187