Benchmarking kinetic calculations of resistive wall mode stability

被引:44
作者
Berkery, J. W. [1 ]
Liu, Y. Q. [2 ]
Wang, Z. R. [3 ]
Sabbagh, S. A. [1 ]
Logan, N. C. [3 ]
Park, J-K [3 ]
Manickam, J. [3 ]
Betti, R. [4 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[2] Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[3] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[4] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
基金
英国工程与自然科学研究理事会;
关键词
MAGNETOHYDRODYNAMIC MODES; ENERGY PRINCIPLE; STABILIZATION; PHYSICS;
D O I
10.1063/1.4873894
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Validating the calculations of kinetic resistive wall mode (RWM) stability is important for confidently predicting RWM stable operating regions in ITER and other high performance tokamaks for disruption avoidance. Benchmarking the calculations of the Magnetohydrodynamic Resistive Spectrum-Kinetic (MARS-K) [Y. Liu et al., Phys. Plasmas 15, 112503 (2008)], Modification to Ideal Stability by Kinetic effects (MISK) [B. Hu et al., Phys. Plasmas 12, 057301 (2005)], and Perturbed Equilibrium Nonambipolar Transport (PENT) [N. Logan et al., Phys. Plasmas 20, 122507 (2013)] codes for two Solov'ev analytical equilibria and a projected ITER equilibrium has demonstrated good agreement between the codes. The important particle frequencies, the frequency resonance energy integral in which they are used, the marginally stable eigenfunctions, perturbed Lagrangians, and fluid growth rates are all generally consistent between the codes. The most important kinetic effect at low rotation is the resonance between the mode rotation and the trapped thermal particle's precession drift, and MARS- K, MISK, and PENT show good agreement in this term. The different ways the rational surface contribution was treated historically in the codes is identified as a source of disagreement in the bounce and transit resonance terms at higher plasma rotation. Calculations from all of the codes support the present understanding that RWM stability can be increased by kinetic effects at low rotation through precession drift resonance and at high rotation by bounce and transit resonances, while intermediate rotation can remain susceptible to instability. The applicability of benchmarked kinetic stability calculations to experimental results is demonstrated by the prediction of MISK calculations of near marginal growth rates for experimental marginal stability points from the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:17
相关论文
共 70 条
[11]   Inertia and ion Landau damping of low-frequency magnetohydrodynamical modes in tokamaks [J].
Bondeson, A ;
Chu, MS .
PHYSICS OF PLASMAS, 1996, 3 (08) :3013-3022
[12]   STABILIZATION OF EXTERNAL-MODES IN TOKAMAKS BY RESISTIVE WALLS AND PLASMA ROTATION [J].
BONDESON, A ;
WARD, DJ .
PHYSICAL REVIEW LETTERS, 1994, 72 (17) :2709-2712
[13]   COMPARATIVE NUMERICAL STUDIES OF IDEAL MAGNETOHYDRODYNAMIC INSTABILITIES [J].
CHANCE, MS ;
GREENE, JM ;
GRIMM, RC ;
JOHNSON, JL ;
MANICKAM, J ;
KERNER, W ;
BERGER, D ;
BERNARD, LC ;
GRUBER, R ;
TROYON, F .
JOURNAL OF COMPUTATIONAL PHYSICS, 1978, 28 (01) :1-13
[14]   Vacuum calculations in azimuthally symmetric geometry [J].
Chance, MS .
PHYSICS OF PLASMAS, 1997, 4 (06) :2161-2180
[15]   Modeling the effect of toroidal plasma rotation on drift-magnetohydrodynamic modes in tokamaks [J].
Chapman, I. T. ;
Sharapov, S. E. ;
Huysmans, G. T. A. ;
Mikhailovskii, A. B. .
PHYSICS OF PLASMAS, 2006, 13 (06)
[16]   Kinetic damping of resistive wall modes in ITER [J].
Chapman, I. T. ;
Liu, Y. Q. ;
Asunta, O. ;
Graves, J. P. ;
Johnson, T. ;
Jucker, M. .
PHYSICS OF PLASMAS, 2012, 19 (05)
[17]   Macroscopic stability of high β MAST plasmas [J].
Chapman, I. T. ;
Cooper, W. A. ;
Graves, J. P. ;
Gryaznevich, M. P. ;
Hastie, R. J. ;
Hender, T. C. ;
Howell, D. F. ;
Hua, M. -D. ;
Huysmans, G. T. A. ;
Keeling, D. L. ;
Liu, Y. Q. ;
Meyer, H. F. ;
Michael, C. A. ;
Pinches, S. D. ;
Saarelma, S. ;
Sabbagh, S. A. .
NUCLEAR FUSION, 2011, 51 (07)
[18]   The effect of energetic particles on resistive wall mode stability in MAST [J].
Chapman, I. T. ;
Gryaznevich, M. P. ;
Howell, D. F. ;
Liu, Y. Q. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (06)
[19]   Sawtooth control and the interaction of energetic particles [J].
Chapman, I. T. ;
Igochine, V. G. ;
Graves, J. P. ;
Pinches, S. D. ;
Gude, A. ;
Jenkins, I. ;
Maraschek, M. ;
Tardini, G. .
NUCLEAR FUSION, 2009, 49 (03)
[20]   Stability of the resistive wall mode in JET [J].
Chapman, I. T. ;
Gimblett, C. G. ;
Gryaznevich, M. P. ;
Hender, T. C. ;
Howell, D. F. ;
Liu, Y. Q. ;
Pinches, S. D. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (05)