Studies of x(2)/x(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy

被引:165
作者
Chu, SW
Chen, SY
Chern, GW
Tsai, TH
Chen, YC
Lin, BL
Sun, CK [1 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taipei 10764, Taiwan
[2] Natl Taiwan Univ, Grad Inst Electroopt Engn, Taipei 10764, Taiwan
[3] Dev Ctr Biotechnol, Div Cell & Mol Biol, Taipei, Taiwan
关键词
D O I
10.1529/biophysj.103.034595
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Optical second- and third-harmonic generations have attracted a lot of attention in the biomedical imaging research field recently due to their intrinsic sectioning ability and noninvasiveness. Combined with near-infrared excitation sources, their deep-penetration ability makes these imaging modalities suitable for tissue characterization. In this article, we demonstrate a polarization harmonics optical microscopy, or P-HOM, to study the nonlinear optical anisotropy of the nanometer-scaled myosin and actin filaments inside myofibrils. By using tight focusing we can avoid the phase-matching condition due to micron-scaled, high-order structures in skeletal muscle fibers, and obtain the submicron-scaled polarization dependencies of second/third-harmonic generation intensities on the inclination angle between the long axes of the filaments and the polarization direction of the linear polarized fundamental excitation laser light. From these dependencies, detailed information on the tensor elements of the second/third-order nonlinear susceptibilities contributed from the myosin/actin filaments inside myofibrils can thus be analyzed and obtained, reflecting the detailed arrangements and structures of the constructing biomolecules. By acquiring a whole, nonlinearly sectioned image with a submicron spatial resolution, we can also compare the polarization dependency and calculate the nonlinear susceptibilities over a large area of the tissue at the same time-which not only provides statistical information but will be especially useful with complex specimen geometry.
引用
收藏
页码:3914 / 3922
页数:9
相关论文
共 32 条
[1]   Nonlinear scanning laser microscopy by third harmonic generation [J].
Barad, Y ;
Eisenberg, H ;
Horowitz, M ;
Silberberg, Y .
APPLIED PHYSICS LETTERS, 1997, 70 (08) :922-924
[2]   Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography [J].
Bouma, BE ;
Tearney, GJ ;
Bilinsky, IP ;
Golubovic, B ;
Fujimoto, JG .
OPTICS LETTERS, 1996, 21 (22) :1839-1841
[3]  
Boyd R. W., 2003, NONLINEAR OPTICS
[4]  
Butcher PN., 1990, Cambridge Studies in Modern Optics, DOI 10.1017/CBO9781139167994
[5]   Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues [J].
Campagnola, PJ ;
Millard, AC ;
Terasaki, M ;
Hoppe, PE ;
Malone, CJ ;
Mohler, WA .
BIOPHYSICAL JOURNAL, 2002, 82 (01) :493-508
[6]   Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser [J].
Chu, SW ;
Liu, TM ;
Sun, CK .
OPTICS EXPRESS, 2003, 11 (08) :933-938
[7]   Nonlinear bio-photonic crystal effects revealed with multimodal nonlinear microscopy [J].
Chu, SW ;
Chen, IH ;
Liu, TM ;
Sun, CK ;
Lee, SP ;
Lin, BL ;
Cheng, PC ;
Kuo, MX ;
Lin, DJ ;
Liu, HL .
JOURNAL OF MICROSCOPY-OXFORD, 2002, 208 (03) :190-200
[8]   Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser [J].
Chu, SW ;
Chen, IH ;
Liu, TM ;
Chen, PC ;
Sun, CK ;
Lin, BL .
OPTICS LETTERS, 2001, 26 (23) :1909-1911
[9]   2-PHOTON LASER SCANNING FLUORESCENCE MICROSCOPY [J].
DENK, W ;
STRICKLER, JH ;
WEBB, WW .
SCIENCE, 1990, 248 (4951) :73-76
[10]   Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy [J].
Empedocles, SA ;
Neuhauser, R ;
Bawendi, MG .
NATURE, 1999, 399 (6732) :126-130