Optimal generalized quantum measurements for arbitrary spin systems -: art. no. 022113

被引:34
作者
Acín, A
Latorre, JI
Pascual, P
机构
[1] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain
[2] Univ Barcelona, Fac Fis, IFAE, E-08028 Barcelona, Spain
来源
PHYSICAL REVIEW A | 2000年 / 61卷 / 02期
关键词
D O I
10.1103/PhysRevA.61.022113
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Positive-operator-valued measurements on a finite number of N identically prepared systems of arbitrary spin J are discussed. Pure states are characterized in terms of Bloch-like vectors restricted by a SU(2J+1) covariant constraint. This representation allows for a simple description of the equations to be fulfilled by optimal measurements. We explicitly find the minimal positive-operator-valued measurement for the N=2 case, a rigorous bound for N=3, and set up the analysis for arbitrary N.
引用
收藏
页数:7
相关论文
共 12 条
[1]  
BRUSS D, QUANTPH9812016
[2]   Universal algorithm for optimal estimation of quantum states from finite ensembles via realizable generalized measurement [J].
Derka, R ;
Buzek, V ;
Ekert, AK .
PHYSICAL REVIEW LETTERS, 1998, 80 (08) :1571-1575
[3]  
Holevo A. S, 1982, PROBABILISTIC STAT A
[4]   Minimal optimal generalized quantum measurements [J].
Latorre, JI ;
Pascual, P ;
Tarrach, R .
PHYSICAL REVIEW LETTERS, 1998, 81 (07) :1351-1354
[5]   OPTIMAL EXTRACTION OF INFORMATION FROM FINITE QUANTUM ENSEMBLES [J].
MASSAR, S ;
POPESCU, S .
PHYSICAL REVIEW LETTERS, 1995, 74 (08) :1259-1263
[6]  
Neumark MA, 1943, CR ACAD SCI URSS, V41, P359
[7]  
Pascual P., 1984, QCD RENORMALIZATION
[8]   OPTIMAL DETECTION OF QUANTUM INFORMATION [J].
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1991, 66 (09) :1119-1122
[9]   NEUMARK THEOREM AND QUANTUM INSEPARABILITY [J].
PERES, A .
FOUNDATIONS OF PHYSICS, 1990, 20 (12) :1441-1453
[10]   HYPERSENSITIVITY TO PERTURBATION IN THE QUANTUM KICKED TOP [J].
SCHACK, R ;
DARIANO, GM ;
CAVES, CM .
PHYSICAL REVIEW E, 1994, 50 (02) :972-987