Identification of clustered YY1 binding sites in imprinting control regions

被引:70
作者
Do Kim, Jeong
Hinz, Angela K.
Bergmann, Anne
Huang, Jennifer M.
Ovcharenko, Ivan
Stubbs, Lisa
Kim, Joomyeong [1 ]
机构
[1] Louisiana State Univ, Ctr BioModular Multi Scale Syst, Dept Biol Sci, Baton Rouge, LA 70803 USA
[2] Lawrence Livermore Natl Lab, Genome Biol Div, Livermore, CA 94551 USA
关键词
D O I
10.1101/gr.5091406
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mammalian genomic imprinting is regulated by imprinting control regions (ICRs) that are usually associated with tandem arrays of transcription factor binding sites. In this study, the sequence features derived from a tandem array of YY1 binding sites of Peg3-DMR (differentially methylated region) led us to identify three additional clustered YY1 binding sites, which are also localized within the DMRs of Xist, Tsix, and Nespas. These regions have been shown to play a critical role as ICRs for the regulation of surrounding genes. These ICRs have maintained a tandem array of YY1 binding sites during mammalian evolution. The in vivo binding of YY1 to these regions is allele specific and only to the unmethylated active alleles. Promoter/ enhancer assays suggest that a tandem array of YY1 binding sites function as a potential orientation-dependent enhancer. Insulator assays revealed that the enhancer-blocking activity is detected only in the YY1 binding sites of Peg3-DMR but not in the YY1 binding sites of other DMRs. Overall, our identification of three additional clustered YY1 binding sites in imprinted domains suggests a significant role for YY1 in mammalian genomic imprinting.
引用
收藏
页码:901 / 911
页数:11
相关论文
共 45 条
[1]   Characterization of the transcriptional regulator YY1 - The bipartite transactivation domain is independent of interaction with the TATA box-binding protein, transcription factor IIB, TAF(II)55, or cAMP-responsive element-binding protein (CBP)-binding protein [J].
Austen, M ;
Luscher, B ;
LuscherFirzlaff, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (03) :1709-1717
[2]   Genomic imprinting in mammals [J].
Bartolomei, MS ;
Tilghman, SM .
ANNUAL REVIEW OF GENETICS, 1997, 31 :493-525
[3]   The protein CTCF is required for the enhancer blocking activity of vertebrate insulators [J].
Bell, AC ;
West, AG ;
Felsenfeld, G .
CELL, 1999, 98 (03) :387-396
[4]   Gene regulation - Insulators and boundaries: Versatile regulatory elements in the eukaryotic genome [J].
Bell, AC ;
West, AG ;
Felsenfeld, G .
SCIENCE, 2001, 291 (5503) :447-450
[5]   Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene [J].
Bell, AC ;
Felsenfeld, G .
NATURE, 2000, 405 (6785) :482-485
[6]   Differential methylation of Xite and CTCF sites in Tsix mirrors the pattern of X-inactivation choice in mice [J].
Boumil, RM ;
Ogawa, Y ;
Sun, BK ;
Huynh, KD ;
Lee, JT .
MOLECULAR AND CELLULAR BIOLOGY, 2006, 26 (06) :2109-2117
[7]   Mechanisms of genomic imprinting [J].
Brannan, CI ;
Bartolomei, MS .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1999, 9 (02) :164-170
[8]  
BROWN KL, 1998, RRD INORG CHEM, V1, P1
[9]   The Polycomb EA2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation [J].
Caretti, G ;
Di Padova, M ;
Micales, B ;
Lyons, GE ;
Sartorelli, V .
GENES & DEVELOPMENT, 2004, 18 (21) :2627-2638
[10]   CLONING OF AN INTRINSIC HUMAN TFIID SUBUNIT THAT INTERACTS WITH MULTIPLE TRANSCRIPTIONAL ACTIVATORS [J].
CHIANG, CM ;
ROEDER, RG .
SCIENCE, 1995, 267 (5197) :531-536