Redundant multiscale transforms and their application for morphological component separation

被引:257
作者
Starck, JL [1 ]
Elad, M
Donoho, D
机构
[1] CEA Saclay, DAPNIA, SEDI, SAP,Serv Astrophys, F-91191 Gif Sur Yvette, France
[2] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
[3] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
来源
ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 132 | 2004年 / 132卷
关键词
D O I
10.1016/S1076-5670(04)32006-9
中图分类号
O59 [应用物理学];
学科分类号
摘要
The development track of the wavelet transform and its redundant extensions designed for images was described. The notion of sparsity and the algorithms that facilitate it was studied. It was found that the combination of multiscale transforms leads to a powerful method in the morphological component analysis (MCA) framework. The results show that a very high-quality restoration can be achieved in an efficient way using several multiscale transforms without having to perform a full decomposition of the original image.
引用
收藏
页码:287 / 348
页数:62
相关论文
共 76 条
[41]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[42]   Sparse representations in unions of bases [J].
Gribonval, R ;
Nielsen, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (12) :3320-3325
[43]  
Holschneider M., 1990, Wavelets, P286
[44]  
Hyvärinen A, 2001, INDEPENDENT COMPONENT ANALYSIS: PRINCIPLES AND PRACTICE, P71
[45]  
JALOBEANU A, 2000, 3955 INRIA
[46]  
JALOBEANU A, 2003, IJCV, V51, P3
[47]   Deconvolution by thresholding in mirror wavelet bases [J].
Kalifa, J ;
Mallat, S ;
Rougé, B .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (04) :446-457
[48]  
Karlovitz L., 1970, J APPROXIMATION THEO, V3, P123
[49]  
KINGSBURY N, 1999, IEEE C AC SPEECH SIG
[50]  
KINGSBURY N, 1998, P 2000 INT C IM PROC