Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system

被引:118
作者
Li, Damei
Lu, Jun-an
Wu, Xiaoqun [1 ]
Chen, Guanrong
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Lorenz system; unified chaotic system; ultimate bound; positively invariant set; Lyapunov function;
D O I
10.1016/j.jmaa.2005.11.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To estimate the ultimate bound and positively invariant set for a dynamic system is an important but quite challenging task in general. In this paper, we attempt to investigate the ultimate bound and positively invariant set for two specific systems, the Lorenz system and a unified chaotic system. We derive an ellipsoidal estimate of the ultimate bound and positively invariant set for the Lorenz system, for all the positive values of its parameters a, b and c, and obtain the minimum value of volume for the ellipsoid. Comparing with the best results in the current literature [D. Li, J. Lu, X. Wit, G. Chen, Estimating the bounds for the Lorenz family of chaotic systems, Chaos Solitons Fractals 23 (2005) 529-534; X. Liao, On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization, Sci. China Ser. E 34 (2004) 1404-1419], our new results fill up the gap of the estimate for the cases of 0 < a < 1 and 0 < b < 2 [X. Liao, On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization, Sci. China Ser. E 34 (2004) 1404-1419]. Furthermore, the estimation derived here contains the results given in [D. Li, J. Lu, X. Wu, G. Chen, Estimating the bounds for the Lorenz family of chaotic systems, Chaos Solitons Fractals 23 (2005) 529-534] and [X. Liao, On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization, Sci. China Ser. E 34 (2004) 1404-1419] as special cases. Along the same line, we also provide estimates of cylindrical and ellipsoidal bounds for a unified chaotic system, for its parameter range 0 <= alpha < 1/29, and obtain the minimum value of volume for the ellipsoid. The estimate is more accurate than and also extends the result of [D. Li, J. Lu, X. Wu, G. Chen, Estimating the bounds for the Lorenz family of chaotic systems, Chaos Solitons Fractals 23 (2005) 529-534] and [X. Liao, On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization, Sci. China Ser. E 34 (2004) 1404-1419]. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:844 / 853
页数:10
相关论文
共 15 条
[1]  
Chen G., 2003, DYNAMICAL ANAL CONTR
[2]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[3]  
LEFCHETZ S, 1963, DIFFERENTIAL EQUATIO
[4]   Bounds for attractors and the existence of homoclinic orbits in the Lorenz system [J].
Leonov, GA .
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2001, 65 (01) :19-32
[5]   LOCALIZING THE ATTRACTOR OF THE LORENZ-SYSTEM [J].
LEONOV, GA ;
BUNIN, AI ;
KOKSCH, N .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (12) :649-656
[6]   Estimating the bounds for the Lorenz family of chaotic systems [J].
Li, DM ;
Lu, JA ;
Wu, XQ ;
Chen, GR .
CHAOS SOLITONS & FRACTALS, 2005, 23 (02) :529-534
[7]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[8]  
2
[9]   Synchronization of a unified chaotic system and the application in secure communication [J].
Lu, J ;
Wu, XQ ;
Lü, JH .
PHYSICS LETTERS A, 2002, 305 (06) :365-370
[10]   Bridge the gap between the Lorenz system and the Chen system [J].
Lü, JH ;
Chen, GR ;
Cheng, DZ ;
Celikovsky, S .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (12) :2917-2926